به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

regular ring

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه regular ring در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه regular ring در مقالات مجلات علمی
  • Ali Akbar Estaji *, Ahmad Mahmoudi Darghadam
    Let $ M(X, \mathscr{A})$ be the ring of all real measurable functions on a measurable space $(X, \mathscr{A})$. We show that for every measurable space $(X,\mathscr{A})$, there exists a $T$-measurable space $(Y,\mathscr{A}^{\prime})$ such that $M_K(X, \mathscr{A})\cong M_K(Y,\mathscr{A}^{\prime})$ and $M_{\infty}(X,\mathscr{A})\cong M_{\infty}(Y,\mathscr{A}^{\prime})$, where $M_K(X,\mathscr{A})$ is the ring of real measurable functions $f\in M(X, \mathscr{A})$ for which $coz(f)$ is a compact element of $\mathscr{A}$, and $M_{\infty}(X,\mathscr{A})$ is the ring of real measurable functions vanishing at infinity on $(X, \mathscr{A})$. Then, we introduce $\sigma$-compact and locally compact measurable spaces. We prove that a $T$-measurable space $(X, \mathscr{A})$ is compact ($\sigma$-compact) if and only if the set $X$ is finite (at most countable) and $\mathscr{A}= \mathcal{P}(X) $. Next, we obtain several equivalent conditions for $ M_{\infty}(X, \mathscr{A})$ to be a regular ring. Finally, we show that if $(X, \mathscr{A})$ is a $T$-measurable space and $ M_{\infty}(X, \mathscr{A})\not=\{0\}$, then there exists a locally compact measurable space $(Y, \mathscr{A}')$ such that $ M_{\infty}(X,\mathscr{A})\cong M_{\infty}(Y,\mathscr{A}^{\prime})$ and $M_K(X,\mathscr{A})\cong M_K(Y,\mathscr{A}^{\prime})$.
    Keywords: Measurable Space, Compact, $, Sigma$-Compact, $Sigma$-Frame, Regular Ring
  • M. Abedi *
    ‎The set $\mathcal{C}_{c}(L)=\Big\{\alpha\in\mathcal{R}L‎ : ‎\big\vert\{ r\in\mathbb{R}‎ : ‎\coz(\alpha-{\bf r})\ne 1\big\}\big\vert\leq\aleph_0 \Big\}$ is a sub-$f$-ring of $\mathcal{R}L$‎, ‎that is‎, ‎the ring of all continuous real-valued functions on a completely regular frame $L$.‎ ‎The main purpose of this paper is to continue our investigation begun in \cite{a} of extending ring-theoretic properties in $\mathcal{R}L$ to‎ ‎the context of completely regular frames by replacing the ring $\mathcal{R}L$ with the ring $\mathcal{C}_{c}(L)$ to the context of zero-dimensional frames.‎ ‎We show that a frame $L$ is a $CP$-frame if and only if $\mathcal{C}_{c}(L)$ is a regular ring if and only if every ideal of $\mathcal{C}_{c}(L)$ is pure if and only if $\mathcal{C}_c(L)$ is an Artin-Rees ring if and only if every ideal of $\mathcal{C}_c(L)$ with the Artin-Rees property is an Artin-Rees ideal if and only if the factor ring $\mathcal{C}_{c}(L)/\langle\alpha\rangle$ is an Artin-Rees ring for any $\alpha\in\mathcal{C}_{c}(L)$ if and only if every minimal prime ideal of $\mathcal{C}_c(L)$ is an Artin-Rees ideal.‎
    Keywords: frame, CP-frame, P-frame, Artin-Rees property, regular ring
  • Akram S. Mohammed, Ibrahim S. Ahmed, Samah H. Asaad

    This article aims to introduce the concept of $p-mathrm{clean ring}mathrm{s}$ as a generalization of some concepts such as $mathrm{clean rings}$ and $r-mathrm{clean rings}$. As the first result, we prove that every $mathrm{clean ring}$ is a $p-mathrm{clean ring}$ and every $r-mathrm{clean ring}$ is a $p-mathrm{clean ring}$. Furthermore, we give the relation between von Neumann $mathrm{local ring}$ and $p-mathrm{clean ring}$. Finally,  we investigate many properties of $p-mathrm{clean ring}mathrm{s}$.

    Keywords: ring, clean ring, r-clean ring, local ring, regular ring
  • A. A. Estaji *, M. Robat Sarpoushi
    Let $mathcal{R}_c( L)$ be the pointfree version of $C_c(X)$, the subring of $C(X)$ whose elements have countable image. We shall call a frame $L $ a $CP$-frame if thering $mathcal{R}_c( L)$ is regular. % The main aim of this paper is to introduce $CP$-frames, that is $mathcal{R}_c( L)$ is a regular ring. We give some We give some characterizations of $CP$-frames and we show that $L$ is a $CP$-frame if and only if each prime ideal of $mathcal{R}_c ( L)$ is an intersection of maximal ideals if and only if every ideal of $mathcal{R}_c ( L)$ is a $z_c$-ideal. In particular, we prove that any $P$-frame is a $CP$-frame but not conversely, in general. In addition, we study some results about $CP$-frames like the relation between a $CP$-frame $L$ and ideals of closed quotients of $L$. Next, we characterize $CP$-frames as precisely those $L$ for which every prime ideal in the ring $mathcal{R}_c ( L)$ is a $z_c$-ideal. Finally, we show that this characterization still holds if prime ideals are replaced by essential ideals, radical ideals, convex ideals, or absolutely convex ideals.
    Keywords: P-frame, CP-frame, regular ring, z-ideal, z-good ring
  • N. Ashrafi, M. Sheibani, H. Dehghany
    In this paper we define a new type of rings”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.
    Keywords: Diagonal power, reduction, exchange ring, regular ring, power, substitution property
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال