جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه tetracyclic graph در نشریات گروه علوم پایه
tetracyclic graph
در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه tetracyclic graph در مقالات مجلات علمی
-
The first Zagreb indexý, ýM1(G)ý, ýand second Zagreb indexý, ýM2(G)ý, ýof the graph G is defined as M1(G)=∑v∈ýýV(G)d2(v) and M2(G)=∑e=uv∈E(G)d(u)d(v), whereý ýd(u) denotes the degree of vertex uý. ýIn this paperý, ýthe firstý ýand second maximum values of the first and second Zagreb indicesý ýin the class of all n−vertex tetracyclic graphs are presentedý.Keywords: ?First Zagreb index?, ?second Zagreb index?, ?tetracyclic graph
-
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n 2$ edges, and tetracyclic if $G$ has exactly $n 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n$.Keywords: Tricyclic graph, Tetracyclic graph, Eccentric connectivity index
-
Let dn;m = 2n+1 and En;m be the graph obtained from a path Pdn;m+1 = v0v1:::vdn;m by joining each vertex of Kn by joining each vertex of Kn. Zhang, Liu and Zhou [On the maximal eccentric connectivity indices of graphs, Appl. Math. J. Chinese Univ., in press] conjectured that if dn;m > 3, then En;m is the graph with maximal eccentric connectivity ndex among all connected graph with n vertices and m edges. In this note, we prove this conjecture. Moreover, we present the graph with maximal eccentric connectivity index among the connected graphs with n vertices. Finally, the minimum of this graph invariant n the classes of tricyclic and tetracyclic graphs are computed.Keywords: Eccentric connectivity index, tricyclic graph, tetracyclic graph, graph operation
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.