به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

cyclogenesis

در نشریات گروه فیزیک
تکرار جستجوی کلیدواژه cyclogenesis در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه cyclogenesis در مقالات مجلات علمی
  • مریم تیموری، برومند صلاحی*، محمدعلی نصراصفهانی، مهریار علیمحمدی
    مرکز چرخندزایی دریای مدیترانه، به عنوان یکی از مناطق مهم چرخندزایی دنیا در قالب سامانه گردش عمومی جو، نقش مهمی در شکل گیری سامانه های بارشی ایران دارند. در تحقیق حاضر، ویژگی های چرخندزایی مدیترانه در فازهای مختلف مادن-جولیان در فصل بهار مورد بررسی قرار گرفته است. از داده های تابش موج بلند خروجی (OLR) و میانگین فشار تراز دریا در دوره آماری 1989 تا 2020 برای ماه های مارس، آوریل و می استفاده شد که از پایگاه داده مرکز پیش بینی میان مدت اروپا و از محصولات مدل ERA5 به دست آمد. روش مورد استفاده در این پژوهش، الگوریتم تشخیص و مسیریابی چرخند دانشگاه ملبورن می باشد. نتایج نشان داد که در فازهای 1، 2 و 7، بیشترین بی هنجاری منفی OLR بر روی خاورمیانه و به خصوص بر روی ایران به وجود آمده که نشان دهنده وقوع جریانات همرفتی همراه با ابرناکی در مناطق مختلفی از ایران است. بررسی ویژگی های چرخندها در منطقه مدیترانه نشان داد که بیشینه چرخندزایی هم زمان با چیرگی فاز 8 (%17) و کمینه آن با چیرگی فازهای 1 و 4 (%9) رخ داده است. از 25 مورد کمینه فشار تشخیص داده شده در دوره مورد مطالعه، 17 مورد مربوط به ماه آوریل، 6 مورد مربوط به ماه مارس و 2 مورد مربوط به ماه مه بوده است. مسیریابی چرخندها حاکی از آن بود که در فاز 1، اغلب چرخندها بر روی دریای مدیترانه بوده و موارد بسیار اندکی در شرق آن تشکیل شده است. در فاز 2، ضمن تشکیل چرخندها در شرق مدیترانه، برخی از آنها به داخل ایران راه یافته اند.
    کلید واژگان: چرخندزایی، مسیریابی چرخند، منطقه مدیترانه، نوسان مادن-جولیان، همرفت
    Maryam Teymouri, Bromand Salahi, *, Mohammad Ali Nasr Esfahani, Mehriar Alimohammadi
    The MJO is the dominant mode of sub-seasonal variability in tropical and subtropical regions and plays a crucial role in the atmosphere-ocean circulation system. Numerous studies have investigated the effects of the Madden-Julian Oscillation on precipitation and temperature. In Iran, this phenomenon has also attracted attention, and several studies have been conducted to assess its impact on the country's climate variations. However, historical reviews show that the predictive use of this phenomenon has been less emphasized. Moreover, the MJO significantly affects the behavior of cyclones in the region, and the annual phase changes of the MJO have substantial impacts on the distribution, movement tracking, and intensity of cyclones entering Iran. In this study, to examine the cyclogenesis conditions during different phases of the Madden-Julian Oscillation (MJO) in the Mediterranean region during the warm season (March, April, and May), MJO, OLR index data and Mean sea level pressure data from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 section between 1989 and 2020 were utilized. Cyclogenesis characteristics in three aspects—frequency, depth, and cyclone tracking—were analyzed using the Melbourne University Cyclone Detection and Tracking Algorithm. In this analysis, days with MJO occurrences having an amplitude of 0.75 or higher, and phases one through eight where this amplitude was consecutively maintained, were extracted as the study period. Due to the limited number of selected periods based on the mentioned conditions, phases that missed one cycle were also included, resulting in 34 selected periods for the warm season overall. Filters were applied to the extracted data using the Melbourne University algorithm, including: a) Only cyclones located within the defined spatial and temporal boundaries (10-55°E / 10-45°N, during 1989-2020) were considered. b) Cyclones lasting less than 24 hours (four time steps: 00:00, 06:00, 12:00, 18:00) were excluded. c) Cyclones identified over multiple time steps (assigned identical numbers) were reviewed, and only the instance with the lowest recorded pressure was considered. d) The median pressure during selected days of different phases was calculated, with the maximum surface pressure of 1005.8 hPa for the warm season. The study of OLR indicates that in phases 1, 2 and 7, the most negative OLR anomaly occurrs over the Middle East and especially over Iran, which indicates the occurrence of convective currents with cloudiness in different regions of Iran. The study of the characteristics of the cyclones in the region showed that phase 8 with more than 17% has the most and phases 1 and 4 with nearly 9.36% have the lowest cyclogenesis area in the study region. In terms of distribution, out of the 25 cases of minimum pressure in warn season, 17, 6, and 2 cases are related to April, March, and May, respectively. The tracking of the cyclogenesis indicated that in phase 1, most of the cyclogenesis were on the Mediterranean Sea and very few cases were formed in its castern area. At the same time, in phase 2, along with the formation of cyclones in the eastern Mediterranean, some of them have entered Iran. In phases 3 and 4 in the north and center of Iraq, the cyclones have traveled their path, and in phases 5 and 6, the majority of the cyclones were over the Mediterranean, and in phases 7, they reached their peak, and the majority of the cyclogenesis were in the central to southern regions of Iraq. The formed cyclone in phase 8 over the Mediterranean Sea have a different behavior and at the same time they have traveled longer paths than other cyclones in different phases. The results of examining the cyclogenesis characteristics during the warm season in different phases of the Madden-Julian Oscillation (MJO) over the Mediterranean Sea reveal that the highest negative anomaly of the OLR index occurs in phase 1 of this oscillation, with its primary focus on Iran. The study of cyclogenesis areas indicates that cyclonic activity during the warm period of the year is asymmetrically distributed. In various phases of the MJO, most cyclones during the warm season are concentrated over Iraq and the western and northwestern regions of Iran, while other cyclonic cores form over the southern of the Persian Gulf and the Arabian Peninsula. The findings from the number of cyclogenesis centers show that out of 25 cases of minimum pressure during the warm season, 17 cases occurred in April, 6 in March, and 2 in May. Cyclone tracking in the region revealed that cyclones formed over the Mediterranean Sea travelled longer distances.
    Keywords: Convection, Cyclogenesis, Cyclone Tracking, Madden-Julian Oscillation, Mediterranean Region
  • محمدعلی نصر اصفهانی*، علیرضا محب الحجه، فرهنگ احمدی گیوی
    در این مطالعه با استفاده از داده های بازتحلیل NCEP/NCAR و شاخص چندمتغیره نوسان مدن-جولین تلاش شده است تا آثار فازهای مختلف این پدیده بر توزیع برخی از کمیت های مهم هواشناختی در منطقه خاورمیانه، بررسی و برای آن توضیح فیزیکی ارائه شود. به این منظور دوره های بحرانی MJO از سال 1974 تا 2015 براساس شاخص آن تفکیک شده ومیانگین و بی هنجاری کمیت های منتخب به دست آمده است. نتایج نشان داد که اثر هم شاری و واشاری ناشی از MJO روی اقیانوس هند تا خاورمیانه و شرق دریای مدیترانه نیز گسترش می یابد؛ به این صورت که ترابری جرم از مرکز همرفت به سوی شرق دریای مدیترانه در ترازهای بالای وردسپهر در فاز چهار سبب حرکت های فروسو در این منطقه می شود. این چرخه در فازهای هفت و هشت MJO عکس می شود و بی هنجاری حرکت های فراسو و واگرایی (همگرایی) در ترازهای بالای (پایین) وردسپهر در شرق مدیترانه را به وجود می آورد. جابه جایی جرم در این دو فاز در نهایت سبب ایجاد شرایط مناسب چرخندزایی در شرق مدیترانه در فاز چهار و از بین رفتن آن در فاز هشت می شود.
    کلید واژگان: پتانسیل سرعت، تابش موج بلند، چرخندزایی، مدیترانه، نوسان مدن-جولین، واگرایی
    Mohammad Ali Nasr-Esfahany *, Alireza Mohebalhojeh, Farhang Ahmadi-Givi
    In this investigation, some aspects of the impact of the Madden-Julian Oscillation (MJO) on the subtropical region of the Northern Hemisphere together with the underlying mechanisms are studied using NCEP/NCAR reanalysis data. The data cover winter months (December to February) from 1974 to 2015. The main method used is that of averaging and analyzing of meteorological parameters associated with convection over the Indian Ocean and the mid-latitude large scale motions in the eight phases of MJO. The indices of MJO provided by the Australia's National Weather, Climate and Water Agency (BMRC) are used to identify the MJO phases. The averaging is carried out over the periods when MJO index is higher than unity and stays in the same phase for at least 5 days. The selected parameters are the “outgoing longwave radiation” (OLR), velocity potential and divergent component of the horizontal wind at 200 hPa level and vertical component of velocity in pressure coordinate denoted by . These parameters have been selected based on their potential to unravel the interaction between tropical and subtropical tropospheric circulations.
    The average of OLR in the selected period shows clear movement and amplification of convection cells associated with MJO from the Western Indian Ocean to the east. This confirms that the periods have been selected properly.
    The distributions of averaged OLR, divergence at 200 hPa level and at 600 hPa level show that the southwest Asia is significantly affected by MJO. Over the Indian Ocean, convective cells of MJO are strengthened from the phase 1 to phase 4 while anomalous convection at 200 hPa level and the associated downdraft at 600 hPa level in the southwest Asia are manifested. During the phases 3 and 4 of MJO, the convection cells associated with MJO exhibit the strongest anomalies over the east of Indian Ocean. The results thus suggest that the atmospheric circulation pattern provides adverse conditions for cyclogenesis and cyclone development in the southwest Asia and especially over Saudi Arabia and the south of Iran. On the contrary, all anomalous patterns are reversed in the phase 6 to phase 8 in the tropical and subtropical region. In these phases, anomalous convergence at 200 hPa and updraft motion at 600 hPa seen during the phases 3 and 4 in the southwest Asia are replaced by anomalous divergence and updraft motion, respectively. The change is such that the atmosphere circulation provides suitable conditions for cyclogenesis and cyclone development at the downstream end of the Mediterranean storm track.
    The current study shows that confluence and diffluence associated with MJO are extended from the Indian Ocean to the Middle East and the east of Mediterranean Sea. The extension is such that the movement of mass from the Indian Ocean to the Middle East at the upper troposphere in the phase 4 results in the formation of a downdraft motion in the east of Mediterranean Sea. The reverse circulation seems to prevail in the phases 7 and 8 of the MJO. Anomalous updraft motion with divergence (convergence) at the upper (lower) troposphere in the east of the Mediterranean Sea are seen when convection is suppressed in the Western Indian Ocean. Another interesting point is that the convergence and divergence in the east of the Mediterranean Sea are dominantly due to variation of wind speed (and not confluence and diffluence), which may be caused by the effects of topography or interaction with mid-latitude flow. Finally, the distribution of OLR confirms the results of the dynamical analysis in the sense that in the Middle East, positive (negative) anomalous values of OLR are seen in the phases 3 and 4 (7 and 8) suggesting less (higher) than normal cloudiness and precipitation. This study shows that confluence and diffluence associated with MJO expand from Indian Ocean to Middle-East and east of Mediterranean Sea. So that mass movement from Indian Ocean to Middle-East in upper troposphere in phase 4 causes to formation a convection center and downdraft motion in the east of Mediterranean Sea. The reverse circulation seems to occur in the phase 7 and 8 of the MJO. Anomalous updraft motion with divergence (convergence) in upper (lower) troposphere in the Eastern Mediterranean Sea are seen when suppression of convection exists in the Western Indian Ocean. Another point is that convergence and divergence in east of Mediterranean Sea is due to the variation of wind speed (not confluence and diffluence) that may becaused by topographic effects or interaction with mid-latitude flow. Distribution of OLR confirms the results of this study so that in the Middle-East, positive (negative) anomalous value of OLR is seen in phase 3 and 4 (7 and 8) which suggests less (more) than normal cloudiness and precipitation.
    Keywords: Cyclogenesis, Divergence, Madden-Julian Oscillation, Mediterranean, Outgoing Long-wave Radiation (OLR), Potential velocity
  • فریده حبیبی

    در این مقاله سعی شده است سامانه های بندالی را که در اقیانوس اطلس و به ویژه در منطقه دریای مدیترانه تشکیل شده اند و منجر به چرخندزایی در شرق مدیترانه می شوند پیامدهایشان ایران را تحت تاثیر قرار می دهد بررسی شوند. بدین منظور ابتدا پستی و بلندی، بادهای محلی منطقه مدیترانه و چرخندزایی بررسی شد و سپس ساختار و انواع سامانه های بندالی موجود روی نقشه های هواشناسی با شکل معرفی شده است.همه بندال های تشکیل شده در منطقه اقیانوس اطلس از تاریخ 1989 تا 1997 شناسایی شده اند که نتایج مربوطه در جدولی درهمین مقاله ارایه شده است. البته این کار به کمک پروفسور استفان کالوکسی از دانشگاه کرنل ایالات متحده امریکا و با داده های دریافت شد از مرکز NCEP صورت گرفته است.بندالی شدن سامانه های جوی ممکن است به توقف حرکت الگوهای هواشناسی منجر شود که در طی آن الگوهای حاکم بر جو نیز روزها و حتی هفته ها در محل خود باقی می مانند. در این حالت، وقوع پدیده هایی نظیر سیل، خشکسالی، دماهای زیاد نرمال، دماهای کم نرمال و دیگر فرین های جوی متحمل هستند. پس شناسایی وقوع آنها در آغاز گسترش حایز اهمیت است و با آگاهی از آن می توان با اطمینان بیشتری وضعیت جوی را برای چند روز آینده پیش بینی کرد.

    کلید واژگان: انواع سامانه های بندالی، سامانه های بندالی، چرخندزایی، دریای مدیترانه، الگوهای هواشناسی، شناسایی بندال
    Farideh Habibi

    This research is an attempt to investigate the blocking systems over the Atlantic Ocean and especially over the Mediterranean sea, which leads to surface cyclogenesis in the east of the Mediterranean Sea, and the influence of their effects over the Iranian region. At the first step of study, Mediterranean topography, local Mediterranean winds and cyclogenesis have studied; then structure and types of existing blocking systems on the synoptic weather maps have been introduced with figures.
    In the second step of the study, all of the blocking systems that were formed over the Atlantic Ocean were identified from 1989 to 1997, the results of which are shown in the table included in the paper. Of course this part of the work was done with the help of Prof. Colucci from USA and data are given from NCEP.
    Atmospheric blocking systems can lead to a stagnation of weather patterns where the patterns remain for several days or even weeks at the same location during the blocking system. This case can lead to flooding, drought, above normal temperatures, below normal temperatures and other weather extremes. Therefore, it is important to recognize a blocking pattern in its initial development. With this awareness, one can forecast up to several days in advance with a high degree of accuracy.

    Keywords: BLOCKING RECOGNITION, BLOCKING SYSTEMS, CYCLOGENESIS, MEDITERRANEAN SEA, TYPES OF BLOCKING SYSTEMS WEATHER PATTERNS
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال