به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

forecasting

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه forecasting در نشریات گروه فنی و مهندسی
  • شیوا حلاجی، مهدی معدن چی زاج*، فریدون اوحدی، حمیدرضا وکیلی فرد
    هدف

    این پژوهش به بررسی دقت مدل های خودرگرسیون ناهمگن در پیش بینی ارزش در معرض ریسک شرطی صندوق های قابل معامله در بورس تهران می پردازد. اهمیت موضوع از نیاز به مدیریت دقیق تر ریسک در بازارهای مالی ناشی می شود، جایی که نوسانات و پرش ها می توانند تاثیرات قابل توجهی بر تصمیم گیری های سرمایه گذاری داشته باشند.

    روش شناسی پژوهش:

     داده های 9 صندوق سهامی، شاخصی و درآمد ثابت طی سال های 1399 تا 1401 با رویکرد درون روزی و فراوانی بالا (روزانه و پانزده دقیقه ای) تحلیل شدند. سه خانواده اصلی مدل های HAR با در نظر گرفتن متغیرهای مرتبط، ارزیابی شدند.

    یافته ها

    نتایج نشان دادند که مدل های مبتنی بر تغییرات توان دوم در پیش بینی نوسانات تحقق یافته برتری داشتند. همچنین، پیش بینی CVaR در صندوق های شاخصی نسبت به صندوق های سهامی و درآمد ثابت دقیق تر بود و مدل خودرگرسیون ناهمگن مرتبه چهارم عملکرد بهتری نسبت به سایر مدل ها نشان داد.

    اصالت/ارزش افزوده علمی:

     این پژوهش، کاربرد مدل های HAR را در پیش بینی ریسک ETFs بررسی کرده و به عنوان یک مطالعه نوآورانه در بازار سرمایه ایران، چارچوبی مفید برای مدیریت ریسک و تصمیم گیری های سرمایه گذاری ارایه داده است.

    کلید واژگان: پیش‎بینی، Cvar، رگرسیون ناهمگن
    Shiva Hallaji, Mahdi Madanchi Zaj *, Fereydon Ohadi, Hamidreza Vakilifard
    Purpose

    This study examines the accuracy of Heterogeneous Autoregressive (HAR) models in forecasting the Conditional Value-at-Risk (CVaR) of Exchange-Traded Funds (ETFs) on the Tehran Stock Exchange. The significance of this study stems from the need for better risk management in financial markets, where volatility and jumps significantly affect investment decisions.

    Methodology

    Data from nine equity, index, and fixed-income funds were analyzed intraday with high frequency (daily and fifteen-minute intervals) from 2019 to 2022. Three main families of HAR models were evaluated by considering the relevant variables.

    Findings

    The results revealed that models based on second-order variations outperformed others in forecasting Realized Volatility (RV). Additionally, CVaR prediction was more accurate for index funds than for equity and fixed-income funds, with the HARQ model demonstrating superior performance.

    Originality/Value: 

    This study investigates the application of HAR models in predicting ETF risks and provides a novel framework for risk management and investment decision making, particularly in the Iranian financial market.

    Keywords: Forecasting, Cvar, Heterogeneous Regression
  • مهدیه توسلی، مهناز ربیعی*، کیامرث فتحی هفشجانی
    هدف

    در پژوهش حاضر هدف شناسایی مهم ترین متغیرهای موثر بر نوسان قیمت طلا است. در تحقیق حاضر برای اولین بار در تحقیقات داخلی به مدل سازی نوسانات بازار بر اساس رویکردهای بیزین غیر خطی و شبکه عصبی عمیق پرداخته شده است.

    روش شناسی پژوهش:

     تحقیق حاضر کاربردی است و از داده های استاندارد و معتبر ماهانه ثبت قیمت طلا در بازه زمانی 2010 تا 2022 میلادی استفاده شده است. در این تحقیق 35 عامل موثر بر ایجاد نوسانات قیمت طلا مورد ارزیابی قرار گرفتند. در این مقاله از رویکرد مدل های گارچ و نوسان تصادفی جهت استخراج نوسان قیمت طلا و از مدل های TVPDMA، TVPDMS و BMA جهت شناسایی مهم ترین متغیرهای موثر بر ایجاد نوسان در این متغیر و از رویکرد یادگیری عمیق جهت بررسی نحوه اثرگذاری متغیرهای منتخب بر نوسانات قیمت طلا از نرم افزار SPSS و MATLAB بهره گرفته شده است.

    یافته ها

    بر اساس نتایج، مدل های SV نسبت به مدل های گارچ در استخراج نوسانات از دقت بالاتری برخوردارند. از میان مدل های TVPDMA ،TVPDMS و مدل BMA از دقت بالاتری برخوردار بود. بر اساس نتایج 12 متغیر موثر بر نوسان قیمت طلا شناسایی شدند. نتایج بیانگر این واقعیت هستند که عوامل داخلی موثر بر نوسانات قیمت طلا بیش از عوامل بیرونی بر این نوسانات اثرگذار می باشند. جهت پیش بینی نوسان قیمت طلا از سه الگوریتم شبکه عصبی پیچشی، حافظه کوتاه مدت ماندگار و شبکه عصبی پرسپترون چند لایه در حالت عمیق بهره گرفته شد. بر اساس نتایج این رویکرد نرخ بهره جهانی بالاترین تاثیر را بر نوسانات قیمت طلا و شاخص Pivot Point DeMark بالاترین سهم را در ایجاد نوسانات قیمت طلا دارد. از آزمون رگرسیون چرخشی برای ارزیابی استفاده شد.

    اصالت/ارزش افزوده علمی:

     بازار طلا، یکی از بازارهای پرتلاطم است که پیش بینی آینده آن می تواند در تصمیم گیری ها تاثیر مثبتی بر جای بگذارد. با آگاهی از قیمت طلا و پیش بینی صحیح آن می توان فرآیند تصمیم گیری خرید و فروش طلا در بازارهای جهانی را تسهیل و بهترین زمان اجرای معاملات و سرمایه گذاری ها را تعیین نمود؛ لذا پیش بینی صحیح قیمت طلا از جهات مختلف حایز اهمیت است. در این تحقیق اقدام به مدل سازی هوشمند پیش بینی نوسانات قیمت طلا نموده است.

    کلید واژگان: قیمت طلا، قیمت نفت، پیش بینی، گارچ، میانگین گیری بیزین
    Mahdieh Tavassoli, Mahnaz Rabeei *, Kiamars Fathi Hafshejani
    Purpose

    The present study aims to identify the most important variables affecting the fluctuations of gold prices. It is the first Iranian research in which the fluctuations in this market are modeled using non-linear Bayesian Model Averaging (BMA) and deep neural network approaches.

    Methodology

    It is applied research where monthly data collected from 2010 to 2022 were used. It evaluates 35 factors playing a role in gold price fluctuations. GARCH and random fluctuation models are used to extract gold price fluctuations. TVPDMA, TVPDMS, and BMA models are used to identify the most important variables causing gold price fluctuations. Furthermore, the deep learning approach is used to investigate how effective the selected variables are in gold price fluctuations.

    Findings

    The results indicated that Support Vector (SV) models were more accurate than GARCH models in capturing fluctuations and that BMA outperformed TVPDMA and TVPDMS. Additionally, 12 variables were identified as influential in gold price fluctuations, with in-market factors playing a more significant role than out-of-market factors. The study also employed Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Multi-Layer Perceptron (MLP) neural network models in deep learning mode to predict gold price fluctuations. It was concluded that global interest rates had the most significant impact on fluctuations in the gold price, with the Pivot Point DeMark's Index making the greatest contribution.

    Originality/Value: 

    The gold market is known for its volatility, and accurate predictions about its future can significantly impact decision-making. Understanding the gold price and making correct forecasts can help inform decisions about buying and selling gold in global markets, and determine the most favorable times for transactions and investments. Therefore, it is crucial to accurately predict the gold price from various perspectives. This research attempted to develop an intelligent model for forecasting fluctuations in the gold price.

    Keywords: Gold Price, Oil Price, Forecasting, GARCH, Bayesian Averaging
  • Marwa HASNI *, Mohamed Salah AGUIR, Mohamed Zied Babai, Zied JEMAI
    Credit risk consists is the expectation of losses stemming from the inability of a borrower to repay a loan. For the purpose of accurate control of credit risks, banking systems seek developing financial information portfolios upon their customers using sophisticated models which are not only restricted to collecting information on borrower’s characteristics, but also, provide visibility on their respective default risk. This paper introduces a novel deep learning model to forecast the credit risk of company customers in banking systems. In particular, we develop a hybrid SVM-LSTM based neural network that predicts the total turnover of a company given the historical data records of its economic and financial features within specific periods. Through an empirical investigation based on data of 13 Tunisian manufacturing and service companies, we show that our proposed model results in more accurate statistical performances compared to the standard LSTM and to the linear regression that is commonly used in the area of credit risk management.
    Keywords: Forecasting, Credit Risk Management, Deep Learning, LSTM, SVM, Time Series
  • Samrad Jafarian-Namin *, Davood Shishebori, Alireza Goli
    The temperature has been a highly discussed issue in climate change. Predicting it plays an essential role in human affairs and lives. It is a challenging task to provide an accurate prediction of air temperature because of its complex and chaotic nature. This issue has drawn attention to utilizing the advances in modelling capabilities. ARIMA is a popular model for describing the underlying stochastic structure of available data. Artificial Neural Networks (ANNs) can also be appropriate alternatives. In the literature, forecasting the temperature of Tehran using both techniques has not been presented so far. Therefore, this article focuses on modelling air temperatures in the Tehran metropolis and then forecasting for twelve months by comparing ANN with ARIMA. Particle Swarm Optimization (PSO) can help deal with complex problems. However, its potential for improving the performance of forecasting methods has been neglected in the literature. Thus, improving the accuracy of ANN using PSO is investigated as well. After evaluations, applying the seasonal ARIMA model is recommended. Moreover, the improved ANN by PSO outperforms the pure ANN in predicting air temperature.
    Keywords: Temperature, Forecasting, ARIMA, ANN, PSO, Tehran
  • Zahira MARZAK *, Rajaa BENABBOU, Salma MOUATASSIM, Jamal BENHRA
    Making future predictions based on past and present data is known as forecasting. In the face of uncertainty, organizations rely on this valuable tool to make informed decisions, develop better strategies, and become more proactive. This study presents a comprehensive comparison of the performance of several classical quantitative forecasting methods, namely, Moving Average, Single Exponential Smoothing, Holt’s Double Exponential Smoothing with a trend, Holt-Winter’s Triple Exponential Smoothing with a trend and seasonality, ARIMA, ARIMAX, SARIMA, SARIMAX, and Multiple Linear Regression method.This research’s aim is to identify the most effective technique for predicting weekly sales of a product, a critical aspect of supply chain management, with the emphasis being placed on the capability of each technique to capture the trend and seasonality components of the dataset. For this, an out-of-sample validation procedure was used; the evaluation of the performance of each technique’s model was conducted using three accuracy metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The results revealed that the SARIMAX model outperformed the other techniques, providing the most accurate forecasts for the product’s weekly sales. This paper contributes to the field of industrial engineering by offering insights into the application of these classical quantitative forecasting methods in real-world scenarios, particularly in sales forecasting. The findings of this study can assist businesses and organizations in making up-to-date decisions and developing more effective and successful strategies.
    Keywords: forecasting, moving average, Exponential smoothing, Holt-Winter, ARIMA, Regression
  • Ali Ghorbanian, Hamideh Razavi *
    Parametric models are considered the widespread methods for time series forecasting. Non-parametric or machine learning methods have significantly replaced statistical methods in recent years. In this study, we develop a novel two-level clustering algorithm to forecast short-length time series datasets using a multi-step approach, including clustering, sliding window, and MLP neural network. In first-level clustering, the time series dataset in the training part is clustered. Then, we made a long time series by concatenating the existing time series in each cluster in the first level. After that, using a sliding window, every long-time series created in the previous step is restructured to equal-size sub-series and clustered in the second level. Applying an MLP network, a model has been fitted to final clusters. Finally, the test data distance is calculated with the center of the final cluster, selecting the nearest distance, and using the fitted model in that cluster, the final forecasting is done. Using the WAPE index, we compare the one-level clustering algorithm in the literature regarding the mean of answers and the best answer in a ten-time run. The results reveal that the algorithm could increase the WAPE index value in terms of the mean and the best solution by 8.78% and 5.24%, respectively. Also, comparing the standard deviation of different runs shows that the proposed algorithm could be further stabilized with a 3.24 decline in this index. This novel study proposed a two-level clustering for forecasting short-length time series datasets, improving the accuracy and stability of time series forecasting.
    Keywords: time series, Clustering, Forecasting, sliding window, Neural Network
  • مبینا خوش سیرت، مهدی خاشعی*، ناصر ملاوردی

    امروزه نگهداری و تعمیرات اهمیت بسیاری در صنایع تولیدی پیدا کرده است. یک راه حل کارا به منظور جلوگیری از توقف فرایندهای تولید، پیش بینی خرابی تجهیزات است. در این مقاله، به منظور تشخیص زمان انجام اقدامات نگهداری و تعمیرات چارچوبی پیشنهاد شده تا حتی الامکان از توقف در فرایند جلوگیری شود. لذا هدف اصلی این پژوهش، ارایه ی یک مدل آماری و هوشمند برای تشخیص نقاط خرابی در زمینه ی نگهداری و تعمیرات پیشگویانه است. در نهایت عملکرد مدل پیشنهادی با سایر شیوه های داده محور به صورت تکی و ترکیبی، شامل مدل های لاجیت، ماشین بردار پشتیبان و شبکه های عصبی پرسپترون چندلایه است، مقایسه شده است. نتایج حاکی از آن است که مدل ماشین بردار پشتیبان در مقایسه با مدل های تکی و ترکیبی سری، از دقت بالاتری برخوردار است و نیز نتایج نشانگر کارآمدی و کارایی ساختار ترکیب موازی پیشنهادی در مسایل مدل سازی و پیش بینی است.

    کلید واژگان: نگهداری و تعمیرات پیشگویانه، پیش بینی، یادگیری ماشین، ساختار ترکیب
    M. Khoshsirat, M. Khashei *, N. Mallaverdi

    Today, maintenance and repair have become very important in the manufacturing industry. An ecient solution to prevent downtime is to predict equipment failure. Therefore, accurate and correct prediction of breakdown events in the eld of predictive maintenance can be very useful. In general, each prediction will be accompanied by a certain amount of error, which in various ways tries to control this error or limit it to a reasonable amount. In this thesis, a framework has been proposed that speci es when the system under review will need maintenance and repairs to prevent downtime as much as possible. Therefore, the main purpose of this thesis is to design and implement an ecient combination structure to accurately predict failure events using both standard statistical standard models and machine learning in predictive maintenance. The literature review results indicate that the use of these methods in recent years has led to extensive advances in the eld of providing accurate forecasts and subsequently improved the level of decisions made by managers and decisionmakers. The proposed model is used to predict failure events in benchmark data related to the truck air pressure system. Finally, the performance of the proposed model is compared with other data-driven techniques individually and in combination, which includes logit models, support vector machines, and multilayer perceptron neural networks. According to the numerical values obtained from the nal analysis, the results indicate that the backup vector machine model has higher prediction accuracy than other single models, and also the results indicate the eciency and e ectiveness of the proposed parallel combination structure compared to the use of models individually and in series combination in modeling and forecasting issues. The parallel hybrid model improved the accuracy of predictions by an average of 11% in test data and 7% in training data. Therefore, due to the greater accuracy in combining classical statistical models and machine learning in parallel, the use of this combined method to improve the accuracy of predictions in the eld of predictive maintenance is recommended for future studies.

    Keywords: Predictive maintenance, forecasting, machinelearning, combination structures
  • Alireza Rokhsari *, Akbar Esfahanipour, Hassan Tanha, Mehrzad Saremi
    In Iran, the energy price is very much influenced by the dollar price. However, this price is highly fluctuated due to various reasons. The emergence of the pandemic, the covid-19, from one part and the financial sanctions on the economy from another, cause the high volatility on this foreign currency. First, in this study, we converted the IRR (Iranian currency) into the same dollar rate of the year, contributing to the impact of exchange rate volatility in the model. Then, we forecast the price of all three principal fuels that affect the cost of electricity production, and then we forecast the electricity prices using ANN_GA and the historical data. This study also examines the fundamental and exacerbating causes in recent years, especially in 2018 when we faced an unprecedented increase in dollar prices in the Iranian market when the U.S. withdrew from the joint comprehensive plan of action (JCPA), and its effects are still visible. We intend to investigate the impact of these fluctuations on the future electricity market. In the end, we examine that which variables (fuel prices) would affect electricity prices the most using a linear regression model.
    Keywords: Forecasting, Fuel Prices, ANN, GA, Energy Prices, Linear Regression Model
  • Nazariy Popadynets *, Olga Vyshnevska, Inna Irtyshcheva, Iryna Kramarenko, Maryna Ponomarova
    The paper outlines the essence, components, and features of globalization from the viewpoint of manifestations in society, development priorities, and possible threats. The processes taking place in the globalized environment are proven to require market participants to adapt to changes in the external environment, including through the expansion of the spheres of transnational business influence. A significant increase in the influence of geopolitical, geosocial, geo-economic, and environmental factors on a global level is emphasized. The paper proves that the development of the world economy, individual states, and regions of the world should be focused on a set of global factors that determine potential opportunities and the priority threats of market entities. A significant advantage of modern activity management is the timely identification of priority approaches to adapting solutions in order to prevent threats, conduct analytical assessments, and predict (plan) the activities of entities in the context of the growing influence of transnational business using appropriate methodological approaches to economic analysis. The authors argue that the development of business ideas, the formation of business plans, and forecasting the results of market entities’ activities should take into account the relevant capabilities and input conditions that will allow a timely response to ensure the adequacy of actions and forecasts. The efficiency of forecasting (planning) activities and adjusting managerial decisions is emphasized. The calculations are based on the method of extrapolating trends according to the equation of the line to predict the activities of a market entity. The paper proves that expansion of the activity domain of the transnational business fosters the maintenance of efficient management mechanisms that allow quick change of approaches to holding the domestic and external policy of business processes.
    Keywords: Analytical Problem, Security, Globalization, Competitive Positions, forecasting, Transnational Companies
  • مرتضی صالحی سربیژن، پروانه سموئی *

    «اثر شلاقی» منجر به نوساناتی همچون موجودی اضافی و سفارشات عقب افتاده در طول زنجیره‌ی تامین می‌شود. در این میان پیش‌بینی مناسب می‌تواند از طریق از بین بردن اثر شلاقی تا حدود زیادی این نوسانات را مرتفع سازد. پژوهش حاضر به پیش‌بینی تقاضای خرده‌فروش، تامین‌کننده و محاسبه‌ی اثر شلاقی در زنجیره‌ی تامین دوسطحی می‌پردازد. برای پیش‌بینی تقاضای خرده‌فروش از مدل مارکف سوییچینگ و تامین‌کننده از مدل‌های اتورگرسیو و میانگین متحرک استفاده می‌شود. نتایج به دست آمده نشان می‌دهد که هنگام استفاده از سیستم سیاست سفارش‌دهی بهر به بهر، مقدار اثر شلاقی کم یا اصلا صفر می‌شود. همچنین، وقتی که از سیاست سیستم سفارش‌دهینقطه‌ی سفارش (q0,Qm) استفاده شود در هر دو سطح زنجیره‌ی تامین، اثر شلاقی وجود دارد.

    کلید واژگان: زنجیره ی تامین، اثر شلاقی، پیش بینی، مدل مارکف سوئیچینگ، مدل اتورگرسیو، میانگین متحرک
    P. Samouei*

    The bullwhip effect in the supply chain could lead to fluctuations such as extra inventory and delayed order. In the meantime, proper demand forecasting can significantly resolve these fluctuations by eliminating the bullwhip effect. The present study considers forecasting of retailer demand, suppliers and calculates the bullwhip effect in the two-level supply chain. Markov switching model and autoregressive model along with moving average are used to predict retail demand and supplier, respectively. The results showed that the lot size policy-based ordering system can reduce or completely remove the bullwhip effect. Besides, the bullwhip effect is appeared in both levels of the supply chain during utilizing the rm(q0,Qm) order-point policy-based ordering system.

    Keywords: Supply chain, bullwhip effect, forecasting, markov-switching model, autoregressive model, moving average
  • D. Karthika *, K. Karthikeyan
    Demand estimation for power utilization might be a key achievement factor for the occasion of any nation. This might be accomplished if the requirement is estimated precisely. In this paper, Distinctive Univariate methods of forecasting Autoregressive Integrated Moving Average (ARIMA), ETS, Holt's model, Holt Winter's Additive model, Simple exponential model was used to figure forecast models of the power consumption in Tamil Nadu. The goal is to look at the presentation of these five methodologies and the experimental information utilized in this investigation was data from previous years for the monthly power consumption in Tamil Nadu from 2012 to 2020. The outcomes show that the ARIMA model diminished the MAPE value to 5.9097%, while those of ETS, Holt's Model, Holt winter's technique, SES is 6.3451%, 9.7708%, 7.3439%, and 9.5305% separately. Depend on the outcomes, we conclude that the ARIMA approach beat the ETS and Holt winter's techniques in this situation.
    Keywords: Autoregressive Integrated Moving Average (ARIMA), Electricity demand, Univariate time series analysis, Forecasting
  • ملیحه نیک سیرت*، سید هادی ناصری

    بیماری کرونا در حال حاضر بحران جهانی سلامت و بزرگترین چالشی است که بشر از زمان جنگ جهانی دوم تاکنون تجربه کرده است. با توجه به همه گیری این بیماری، پیش بینی تعداد موارد مبتلا و مرگ ومیر ناشی از آن برای درک بهتر شرایط فعلی و تهیه برنامه کوتاه مدت توسط مدیران، بسیار ارزشمند است. بر این اساس، در این مقاله یک مدل شبکه عصبی-فازی برای پیش بینی تعداد موارد مبتلا و مرگ ومیر ناشی از این بیماری در کشورهایی که بیشتر با این بیماری درگیر هستند پیشنهاد شده است. عملکرد شبکه عصبی-فازی پیشنهادی با شبکه های عصبی پیش بینی سری زمانی و همچنین شبکه های عصبی توابع پایه ای شعاعی مقایسه شده است. مدل پیشنهادی قادر است تعداد موارد مبتلا و مرگ ومیر ناشی از بیماری را برای یک دوره 15 روز آینده با نرخ خطای کمتر پیش بینی کند.

    کلید واژگان: کرونا، شبکه عصبی-فازی، سری زمانی، پیش بینی، تابع تقریب، کلاس بندی
    Malihe Niksirat *, Seyed Hadi Nasseri

    Corona is currently the world's health crisis and the biggest challenge humans have experienced since World War II. Given the epidemic of the disease, it is invaluable to forecasting the number of cases and the resulting deaths to better understand the current situation and provide a short-term plan by managers. Accordingly, in this paper, a neuro-fuzzy network model is proposed to forecast the number of cases and deaths in countries that are most affected by this disease. The performance of the proposed neuro-fuzzy network has been compared with time series forecasting neural network as well as radial basic functions neural networks. The proposed model is able to predict the number of cases and deaths from the disease for a period of the next 15 days at a lower error rate.

    Keywords: corona, Neuro-fuzzy network, time series, Forecasting, approximation function, Classification
  • Inyeneobong Ekoi Edem, Sunday Ayoola Oke *, Kazeem Adekunle Adebiyi

    Industrial forecasting is a top-echelon research domain, which has over the past several years experienced highly provocative research discussions. The scope of this research domain continues to expand due to the continuous knowledge ignition motivated by scholars in the area. So, more intelligent and intellectual contributions on current research issues in the accident domain will potentially spark more lively academic, value-added discussions that will be of practical significance to members of the safety community. In this communication, a new grey–fuzzy–Markov time series model, developed from nondifferential grey interval analytical framework has been presented for the first time. This instrument forecasts future accident occurrences under time-invariance assumption. The actual contribution made in the article is to recognise accident occurrence patterns and decompose them into grey state principal pattern components. The architectural framework of the developed grey–fuzzy–Markov pattern recognition (GFMAPR) model has four stages: fuzzification, smoothening, defuzzification and whitenisation. The results of application of the developed novel model signify that forecasting could be effectively carried out under uncertain conditions and hence, positions the model as a distinctly superior tool for accident forecasting investigations. The novelty of the work lies in the capability of the model in making highly accurate predictions and forecasts based on the availability of small or incomplete accident data.

    Keywords: Forecasting, Manufacturing, Accidents, Fuzzy-grey, Markov, Pattern recognition
  • Mohammad Zolghadr, Seyed Armin Akhavan Niaki, S. T. A. Niaki *

    The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are considered in a stepwise regression to identify significant variables. The president’s approval rate is identified as the most significant variable, based on which eight other variables are identified and considered in the model development. Preprocessing methods are applied to prepare the data for the learning algorithms. The proposed procedure significantly increases the accuracy of the model by 50%. The learning algorithms (ANN and SVR) proved to be superior to linear regression based on each method’s calculated performance measures. The SVR model is identified as the most accurate model among the other models as this model successfully predicted the outcome of the election in the last three elections (2004, 2008, and 2012). The proposed approach significantly increases the accuracy of the forecast.

    Keywords: Presidential election, Forecasting, Artificial neural network, Support vector regression, Linear regression
  • Adeniran Adetayo Olaniyi *, Kanyio Olufunto Adedotun, Owoeye Adelanke Samuel
    Two years single moving average and simple exponential smoothing with smoothing constant of 0.9 were applied to forecast the 2018 demand for domestic air passenger in Nigeria. Also, the two methods of forecasting were evaluated and compared with Mean Squared Deviations (MSD) to determine which method gives the lowest deviation as it will produce best forecast for the year 2018 domestic air passenger demand in Nigeria. The study relied on data of domestic air passenger demand between the periods of the year 2010 to the year 2017. It was revealed that the MSD of two yearly single moving average gave the best year 2018 forecast as it has a lower MSD when compared to the MSD of simple exponential smoothing with the smoothing constant of 0.9. This study is useful in the planning process of an airport, airline, and other stakeholders involved in Nigeria’s air transportation. It will help to prevent problems of having excess air transport demand over air transport supply or having excess air transport supply over demand.
    Keywords: Forecasting, Domestic Air Passenger Demand, Single Moving Average, Simple Exponential Smoothing
  • معین سماک جلالی، سیدمحمدتقی فاطمی قمی *
    در میان کاربردهای انبوهی که برای مفهوم سری های زمانی می توان متصور شود، استفاده از این مفهوم در صنایع تولیدی در جهت تشخیص مواقع خرابی دستگاه ها پیش از موعد و انجام اقدامات نگهداری و تعمیرات، همچنین تعیین درصد قطعات معیوب با استفاده از بررسی و تحلیل تناوب اتفاقات صورت گرفته در یک خط تولید می تواند بسیار ارزشمند تلقی گردد. در این راستا، پژوهش حاضر به بررسی نقش استفاده از سری های زمانی به منظور بررسی موارد عنوان شده در یک شرکت قطعه سازی خودرو می پردازد. بدین منظور، ابتدا به تحلیل و بررسی داده های مستخرج از بخش نگهداری و تعمیرات کارخانه پرداخته و سپس با استفاده از روش های تضمین کیفیت نظیر آنالیز حالات بالقوه خرابی، اقدام به تعیین مهم ترین عوامل موثر بر خرابی قطعات و درنتیجه تشخیص حدودی خرابی تجهیزات می پردازیم.
    کلید واژگان: پیش بینی، سری های زمانی، نگهداری و تعمیرات، تضمین کیفیت، قطعه سازی خودرو
    Moeen Sammak Jalali, Seyed Mohammad Taghi Fatemi Ghomi *
    Among various applications of time series, applying this concept in production industries with the intention of pre-detecting failure times of machines and implementing maintenance tasks, is considered as one of the most valuable activities in the automotive industries. With this regard, this article embarks on applying time series analysis as well as quality assurance concepts to detect failure times and implement proper actions. With this regard, we will analyze the data derived from maintenance department of the company. Then we determine influential factors on parts failure by means of quality assurance concepts.
    Keywords: Forecasting, Time Series, maintenance, Quality Assurance, Automotive manufacturing
  • مهدی لطفی، حمیده رضوی
    وجود الگوهای متنوع برای مدل سازی و پیش بینی سری های زمانی، باعث می شود انتخاب ساختار و تحلیل این گونه مدل ها با سعی و خطا، صرف زمان زیاد و مبتنی بر نظر افراد خبره انجام شود. با توجه به ماهیت شرطی رویه های شناسایی مدل پیش بینی سری های زمانی، در این مقاله سعی می شود با ایجاد تعدادی موتور جستجو، تکنیک تجزیه و تحلیل مشخص شود و در مرحله بعد، با فرض معین بودن تکنیک مناسب، پایگاه دانش به گونه ای توسعه داده شود که در نهایت امکان نسبت دادن مدل مناسب به داده های در دست مطالعه، فراهم شود. پس از تعیین نوع روش، میزان برازش مدل مورد نظر بر داده های تاریخی به وسیله شاخص های مناسب اندازه گیری می شود. در صورت مناسب بودن این شاخص ها، با به کارگیری مدل انتخاب شده، پیش بینی دوره های بعدی به دست آمده و می توان تناسب مدل پیش بینی را سنجید. سپس با تکرار این فرآیند و تغییر پاسخ سوالات در مراحلی که حالت قطعی برای جواب وجود ندارد، به تعداد کافی مدل انتخاب کرده و از بین آنها برترین مدل بر گزیده می شود. در انتها، پیاده سازی سیستم خبره و اجرای مدل روی داده های نمونه به صورت مطالعه موردی، کارآیی و اعتبار روش پیشنهادی را تایید می کند.
    کلید واژگان: سیستم خبره، پیش بینی، سری زمانی، خطای پیش بینی
    M. Lotfi, H. Razavi
    Identifications and analysis of time series are time consuming، based on trial and error and highly dependent on expert judgments. This is mainly due to the presence of various models for forecasting time series، as well as introducing new techniques for analysis and predictions. In this paper، expert system structure is used to replace traditional methods of model identifications for time series. Firstly، several search engines are defined and analytical methods are specified. Next، the knowledge base is developed such that a proper model can be assigned to each data set. The goodness of fit is then evaluated by mathematical indices. Repeating the process and modifying the responses to account for uncertain situations، will provide a set of models to make the final decision. Lastly، the performance of the proposed expert system is verified by a series of sample data as a case study and the efficiency of the system is approved.
    Keywords: Expert system, Forecasting, Time series, Forecasting error
  • فرناز برزین پور، سعید کریمی
    مصرف روزافزون انرژی برق در ایران، یکی از دغدغه های سیاست گذاران این حوزه است. وجود نظام یارانه ایی در تعیین قیمت، یکی از دلایل اصلی ایجاد الگوی مصرف ناصحیح بوده که تکثر تعداد مشترکین، مصرف کنندگان و نوع مصرف، هزینه های زیادی را بر دولت ها تحمیل کرده تا منجر به تصویب قانون هدفمندی یارانه ها توسط سیاست گذاران این حوزه شده است. در این مقاله ضمن تحلیل عوامل موثر بر تقاضای برق خانگی، با استفاده از روش شبکه عصبی مصنوعی، مدلی با هدف شناخت الگوی مصرف برق خانگی ایجاد و با تعریف پنج سناریوی مختلف قیمتی، میزان مصرف تا سال آخر اجرای قانون هدفمندی یارانه ها پیش بینی می شود. سرانه مصرف برق خانگی، به عنوان متغیر وابسته مدل در نظر گرفته شده است و عواملی چون قیمت برق، درآمد ملی سرانه، شاخصی به نمایندگی از تعداد روزهای گرم سال و ساختار اقتصادی کشور به عنوان عوامل موثر بر آن انتخاب شدند. با توجه به نتایج به دست آمده از مدل که قابلیت توضیح بسیار خوبی داشته0.996 R= عوامل قیمتی نقش بسیار کمی در تعیین الگوی مصرف دارند. بنابراین اجرای طرح هایی از سوی سیاست گذاران این عرصه، به منظور تغییر قابل توجه قیمت برای اصلاح الگوی مصرف ضروری به نظر می رسد.
    کلید واژگان: شبکه عصبی، سناریوسازی، پیش بینی مصرف برق، یارانه، مصرف خانگی برق
    F. Barzinpour, S. Karimi
    The increasing consumption of electricity in Iran is one of the greatest concerns of the government. Using the subsidy-based pricing system is one of the main reasons of improper pattern of residential electricity consumption that has imposed great cost over the government due to the increased number of consumers and their improper way of consuming electricity. In this paper، we analyze the factors that affect residential electricity demand using artificial neural network (ANN) and predict the amount of electricity consumption in 2006 (the end of the year in which subsides are being removed) by definition of five different price scenarios. The per-capita residential electricity consumption is considered as a dependent variable of the model. Electricity price، GDP per capita، macroeconomic fluctuations and a variable representing weather temperatures are used as explanatory factors. The proposed model has a good explaining capability (R=0. 996) and with predicting independent variables up to 2016، the dependent variable were predicted using procedures like time series and ARIMA. The achieved results show that the price factors have limited role in defining the pattern of residential electricity consumption. So small changes in electricity price will not reduce the electricity consumption and committing scenarios with gradual changes in price will not lead to the reduction of electricity consumption. Therefore، it is necessary for the government to commit scenarios with significant increase of prices in order to correct the pattern of residential electricity consumption; otherwise، the electricity demand will increase uncontrollably due to the increasing population and consumption.
    Keywords: Scenario building, Artificial Neural Network, Forecasting, Subsidies, Electricity consumption
  • Ramin Sadeghian *

    The paper examines the application of semi-Markov models to the phenomenon of earthquakes in Tehran province. Generally, earthquakes are not independent of each other, and time and place of earthquakes are related to previous earthquakes; moreover, the time between earthquakes affects the pattern of their occurrence; thus, this occurrence can be likened to semi-Markov models. In our work, we divided the province of Tehran into six regions and grouped the earthquakes regarding their magnitude into three classes. Using a semi-Markov model, it proceeds to predict the likelihood of the time and place of occurrence of earthquakes in the province.

    Keywords: Semi-Markov model, Earthquake occurrence, forecasting, Transition matrix
  • Amir Mohammadzadeh, Nasrin Mahdipour, Arash Mohammadzadeh
    Decision making on budgeting is one of the most important issues for executing managers. Budgeting is a major tool for planning and control of projects. In public and non-profit organizations and institutions, estimating the costs and revenues plays an important role in receiving credit and budgeting. In this regard, in the present paper the case of Isfahan municipality is considered. One of the main expenditures of the 14 districts of Isfahan is the costs related to water. Predicting the total cost of water helps the municipality of Isfahan to optimize the water use in its 14 urban zones. Thus, in this study the total cost of water in the districts of Isfahan is estimated using regression analysis and neural network models. Then the results of the methods are compared with each other to minimize the deviations from the approved budget. Finally, the neural network method is selected as the main simulation method for forecasting the total cost of water in the districts of Isfahan.
    Keywords: Isfahan Municipality, Regression model, Artificial neural networks, Forecasting, Cost of water, Prediction
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال