به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « pca model » در نشریات گروه « صنایع »

تکرار جستجوی کلیدواژه «pca model» در نشریات گروه «فنی و مهندسی»
  • Nastaran Hajarian, Farzad Movahedi Sobhani *, Seyed Jafar Sadjadi
    One of the most complex and costly systems in the industry is the Gas turbine (GT). Because of the complexity of these assets, various indicators have been used to monitor the health condition of different parts of the gas turbine. Turbine exit temperature (TET) spread is one of the significant indicators that help monitor and detect faults such as overall engine deterioration and burner fault. The goal of this article is to use data-driven approaches to monitor TET data to detect faults early, as fault detection can have a significant impact on gas turbine reliability and availability. In this study, the TET data of v94.2 GT is measured by six temperature transmitters to show a detailed profile. According to the statistical tests, TET data are high dimensional and time-dependent in the real world industry. Hence, three distinctive methods in the field of the gas turbine are proposed in this study for early fault detection. Conventional principal component analysis (PCA), moving window PCA (MWPCA), and incremental PCA (IPCA) were implemented on TET data. According to the results, the conventional PCA model is a non-adaptive method, and the false alarm rate is high due to the incompatibility of this approach and the process. The MWPCA based on V-step-ahead and IPCA approaches overcame the non-stationary problem and reduced the false alarm rate. In fact, these approaches can distinguish between the normal time-varying and slow ramp fault processes. The results showed that IPCA could detect fault situations faster than MWPCA based on V-step-ahead in this study.
    Keywords: early fault detection, Data-Driven, Gas Turbine Exit Temperature, time-varying, PCA model, MWPCA model, IPCA model}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال