به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

support vector regression (svr)

در نشریات گروه صنایع
تکرار جستجوی کلیدواژه support vector regression (svr) در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه support vector regression (svr) در مقالات مجلات علمی
  • پریا سلیمانی*، زهره یعقوبی
    پیش بینی دقیق نیاز مصرف شبکه برق ماهانه می تواند در برنامه ریزی انرژی موثر باشد و مدیریت صحیح تر مصرف برق را امکان پذیر کند. نیاز مصرف برق ماهانه نشان دهنده گرایش فصلی پیچیده و غیرخطی است یکی از مدل هایی که به طور گسترده برای پیش بینی سری های زمانی غیرخطی استفاده می شود، رگرسیون بردار پشتیبان (SVR) است که در آن باید انتخاب پارامترهای کلیدی و تاثیر تغییرات فصلی درنظر گرفته شود؛ بنابراین ضروری است پارامترهای مدل رگرسیون بردار پشتیبان به صورت مناسب انتخاب شوند و گرایش های غیرخطی و فصلی داده های نیاز مصرف برق تعدیل شوند. روشی که در پژوهش حاضر پیشنهاد می شود، پیوندزدن مدل رگرسیون بردار پشتیبان (SVR) با الگوریتم بهینه سازی مگس میوه (FOA) و تنظیم شاخص فصلی برای پیش بینی نیاز مصرف برق ماهانه است. علاوه براین، به منظور ارزیابی جامع عملکرد پیش بینی مدل ترکیبی، نمونه ای کوچک از نیاز مصرف برق ماهانه ایران و نمونه بزرگی از تولید برق ماهانه ایران برای نشان دادن عملکرد پیش بینی بررسی شده است. همچنین در این پژوهش برتری «مدل ترکیبی رگرسیون بردار پشتیبان با الگوریتم بهینه سازی مگس میوه با تعدیل گرایش های فصلی (SFOASVR)» در مقایسه با سایر مدل های شناخته شده پیش بینی از نظر دقت پیش بینی و کم بودن خطای پیش بینی بررسی شده است. برای این منظور معیارهای ارزیابی ریشه میانگین مربعات خطا (RMSE) و میانگین درصد خطای مطلق (MAPE)، همچنین آزمون ناپارامتری ویلکاکسون صورت می گیرد. براساس نتایج، مدل SFOASVR از سایر مدل های پیش بینی خطای کمتری دارد و درنتیجه گزینه ای مناسب برای کاربردهای پیش بینی نیاز مصرف برق است.
    کلید واژگان: الگوریتم بهینه سازی مگس میوه (FOA)، تغییرات فصلی، پیش بینی، رگرسیون بردار پشتیبان (SVR)، نیاز مصرف شبکه برق
    Paria Soleimani *, Zohreh Yaghobi
    Accurate monthly power demand network forecasting can help to plan the energy and it can handle the correct management of the power consumption. It has been found that the monthly electricity consumption demonstrates a complex nonlinear characteristic and has an obvious seasonal tendency. One of the models that is widely used to predict the nonlinear time series is the support vector regression model (SVR) in which the selection of key parameters and the effect of seasonal changes could be considered. The important issues in this research are to determine the parameters of the support vector regression model optimally, as well as the adjustment of the nonlinear and seasonal trends of the electricity data. The method that is proposed by this study is to hybrid the support vector regression model (SVR) with Fruit fly optimization Algorithm (FOA) and the seasonal index adjustment to forecast the monthly power demand. In addition, in order to evaluate the performance of the hybrid predictive model a small sample of the monthly power demand from Iran and a large sample of Iran monthly electricity production has been used to demonstrate the predictive model performance. This study also evaluates the superiority of the SFOASVR model to the other known predictive methods. In terms of the prediction accuracy, we used the evaluation criteria such as Root Mean Square Error (RMSE) and mean absolute percentage error (MAPE) as well as Wilcoxon's nonparametric statistical test. The results show that the SFOASVR model has less error than the other forecasting models and is superior to the most other models in terms of Wilcoxon test. Therefore, SFOASVR method is an appropriate option for prediction of the power demand.
    Keywords: Forecast, Power demand network, Seasonal changes, Support Vector Regression (SVR), Fruit fly Optimization Algorithm (FOA)
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال