به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

machine learning

در نشریات گروه فناوری اطلاعات
تکرار جستجوی کلیدواژه machine learning در نشریات گروه فنی و مهندسی
  • جواد جهان آرا*، حسین سهلانی

    امروزه شبکه های اجتماعی، محل حکمرانی و بستری مناسب برای دشمنان کشور شده است. در جریان تجمع هایی که گاهی در کشور رخ داده، به درستی اثبات شده که شبکه های اجتماعی و پیام رسان های خارجی، محلی برای ساماندهی، مدیریت، تحریک، ترغیب و حتی آموزش جوانان برای اغتشاش و خرابکاری بوده است. هدف از این مطالعه این است که چگونه یادگیری ماشین می تواند توسط نهادهای امنیتی یا انتظامی برای کشف، پیشگیری و مقابله با تجمعات غیرقانونی با سرعتی بسیار دقیق و سریع استفاده شود. برای دستیابی به این هدف تعداد 73 مقاله در بازه زمانی 2012 تا 2023 که در آن از روش های یادگیری ماشین استفاده شده موردبررسی قرار گرفته است. بااین حال شبکه های عصبی مصنوعی با 44%، روش های جنگل تصادفی با 30% و روش K - نزدیک ترین همسایه با 26% متداول ترین روش های مورداستفاده بودند. همچنین 62% از پژوهشگران از مجموعه داده های مجرمانه برخط پورتال های عمومی بر روی شبکه اینترنت و 38% نیز از مجموعه داده های رسمی و خصوصی سازمان های قانونی ازجمله پلیس در تحقیقات خود استفاده نموده اند. نتایج تحقیق نشان می دهند که به کارگیری روش های جنگل تصادفی بهترین کارایی را داشته است اما برای مجموعه داده های بزرگ، استفاده از روش های شبکه عصبی مصنوعی بهترین نتایج را برای پیش بینی وقوع جرم بر اساس زمان و مکان آن برآورده ساخته است.

    کلید واژگان: یادگیری ماشین، شبکه های عصبی مصنوعی، تجمع، فراخوان
    Javad Jahanara *, Hossein Sahlani

    Nowadays, social networks have become a governing space and a suitable platform for the enemies of the country. During occasional protests that occur in the country, it has been properly demonstrated that social networks and foreign messengers serve as a place for organizing, managing, inciting, encouraging, and even educating young people for disruption and vandalism. The aim of this study is to show how machine learning can be utilized by security or law enforcement agencies to detect, prevent, and counter illegal gatherings with high precision and speed. To achieve this goal, a total of 73 articles published between 2012 and 2023, which employed machine learning methods, were examined. However, artificial neural networks were the most common method used, accounting for 44%, followed by random forest methods at 30%, and K-nearest neighbor methods at 26%. Additionally, 62% of researchers utilized online criminal datasets from public portals on the internet, while 38% used official and private datasets from legal organizations such as the police in their research. The results indicate that the use of random forest methods had the best performance, but for large datasets, the use of artificial neural networks yielded the best results for predicting crime occurrence based on time and location.

    Keywords: Machine Learning, Artificial Neural Networks, Clustering, Recall
  • مرجان رهبر*

    Bst DNA پلیمراز، آنزیم اصلی مورد استفاده در روش های تکثیر هم دما مانند LAMP، به دلیل قابلیت جایگزینی رشته ای بالا در کاربردهای زیستی و تشخیصی استفاده می شود. بااین حال، محدودیت هایی مانند پایداری حرارتی پایین و کاهش کارایی در دماهای بالا موجب شده است که استفاده از آن در شرایط سخت تر با چالش هایی همراه باشد. در این پژوهش، یک رویکرد مهندسی ترکیبی برای بهبود عملکرد Bst DNAP ارائه شده است. ابتدا، یک دومین سریع تا شونده (HP47) از پروتئین villin به آنزیم متصل شد که موجب افزایش پایداری و سهولت خالص سازی آن گردید. سپس، یک الگوریتم یادگیری ماشین (MutCompute) برای شناسایی جهش های بهینه به منظور افزایش پایداری حرارتی مورد استفاده قرار گرفت. جهش های منتخب به طور افزایشی موجب افزایش دمای دناتوراسیون تا 2.5 درجه سانتی گراد شدند و امکان انجام واکنش های LAMP را در دمای 73 درجه سانتی گراد فراهم کردند؛ درحالی که Bst 2.0 در این دما غیرفعال شد. همچنین، واریانت های طراحی شده، زمان موردنیاز برای تکثیر را تا 10 دقیقه کاهش دادند. این یافته ها نشان می دهند که استفاده از یادگیری ماشین در طراحی آنزیم های مقاوم به حرارت می تواند کاربردهای گسترده ای در زیست فناوری و تشخیص بیماری های عفونی داشته باشد.

    کلید واژگان: Bst DNA پلیمراز، تکثیر هم دما، LAMP، پایداری حرارتی، یادگیری ماشین، مهندسی آنزیم، جهش زایی هدفمند، زیست فناوری، تشخیص مولکولی
    Marjan Rahbar *

    Bst DNA polymerase is a key enzyme used in isothermal amplification techniques such as LAMP due to its strong strand displacement activity. However, its limited thermal stability and reduced efficiency at elevated temperatures pose challenges for its broader application in molecular diagnostics. In this study, we employed a combined engineering approach to enhance Bst DNAP performance. A fast-folding HP47 domain from villin was fused to the enzyme, significantly improving stability and purification efficiency. Additionally, a machine learning algorithm (MutCompute) was used to predict stabilizing mutations, leading to a 2.5°C increase in denaturation temperature and enabling LAMP reactions to proceed at 73°C, a temperature at which Bst 2.0 loses functionality. Furthermore, the engineered variants reduced reaction times by up to 10 minutes, improving overall efficiency. These findings demonstrate the potential of machine learning-driven enzyme engineering to develop highly thermostable enzymes for biotechnology and infectious disease diagnostics.

    Keywords: Bst DNA Polymerase, Isothermal Amplification, LAMP, Thermal Stability, Machine Learning, Enzyme Engineering, Directed Mutagenesis, Biotechnology, Molecular Diagnostics
  • Sana Nazarinezhad*, Nafise Khosrojerdi, Ahmadreza Shafieesabet

    Today, smartphones are prevalent for personal and corporate use and have become the new personal computer due to their portability, ease of use, and functionality (such as video conferencing, Internet browsing, e-mail, continuous wireless and data connectivity, worldwide map location services, and countless mobile applications such as banking applications). On the other hand, we store many sensitive and private information daily on smart devices. This information is of interest to malicious writers who are developing malware to steal information from mobile devices. Unfortunately, the open source and widespread adoption of the Android operating system has made it the most targeted of the four popular mobile platforms by malware writers. Many researchers have tried to identify malware using program signatures, which have been successful to some extent. However, the signature cannot effectively identify new and unknown malware. For this reason, in this article, we propose a method that designs a machine-learning model for Android malware detection based on the properties of Permissions, Intents APKs. In this study, we evaluated more than 25,000 Android samples belonging to malware and trusted samples. Experimental results show the effectiveness of the proposed method by obtaining 96.27% accuracy.

    Keywords: Malware Detection, Artificial Intelligence, Machine Learning, Anti-Malware, Android, Xgboost, Ensemble Classifier
  • Shubham Minhass, Ritu Chauhan *, Harleen Kaur

    There is an urgent need for precise and trustworthy models to forecast device behavior and evaluate vulnerabilities as a result of the Internet of Things' (IoT) explosive growth. By assessing the effectiveness of several machine learning algorithms logistic regression, decision trees, random forests, Naïve Bayes, and KNN on two popular IoT devices Alexa and Google Home Mini this study seeks to enhance IoT device behavior forecasting. Our results show that Naïve Bayes and random forest models are more accurate and efficient than other algorithms at predicting device behavior. These findings demonstrate how important algorithm selection is for maximizing the performance of IoT systems. The study also emphasizes the usefulness of precise device behavior prediction for practical uses such as industrial control systems, home automation, and medical monitoring. For example, accurate forecasts can improve decision-making in crucial situations, facilitate more seamless automation, and stop system failures. In addition to adding to the expanding corpus of research on IoT data analysis, this study establishes the foundation for the creation of increasingly sophisticated machine learning models that can manage the intricate and ever-changing nature of IoT ecosystems. Future studies should concentrate on increasing the dataset's diversity to encompass a wider range of IoT environments and devices and enhancing the model's adaptability to changing IoT environments.

    Keywords: Machine Learning, Predictive Model, Smart Devices, Google Home Mini, Alexa, Iot, KNN
  • Amirhossein Mirasharafi, Elham Moghadamnia*

    This research investigates the impact of artificial intelligence techniques, including machine learning, deep learning, and neural networks, on optimizing production processes in the electronics industry, focusing on companies based in Tehran. The research sample consisted of 243 managers and experts related to supply chain management within these companies. Using Partial Least Squares Structural Equation Modeling (PLS-SEM), the results indicated that each of these techniques positively and directly influences demand forecasting, inventory management, quality control, and cost reduction in production. The findings also highlight the importance of integrating these techniques to achieve synergistic effects and enhance overall production process performance. From a theoretical perspective, this study contributes to expanding the existing literature on the application of artificial intelligence in manufacturing and presents new models for examining the interactions of these techniques. On the other hand, the results are practical for managers in the electronics industry and other manufacturing sectors, enabling them to leverage artificial intelligence tools for process optimization, productivity enhancement, and cost reduction. Ultimately, this research demonstrates that artificial intelligence can act as a transformative factor in the manufacturing industry, guiding organizations toward sustainable competitiveness.

    Keywords: Supply Chain Management, Manufacturing Process Optimization, Artificial Intelligence, Machine Learning, Deep Learning, Neural Networks, Electronics Industry
  • فرشید وظیفه دوست*، سمیه کدخدا ده خانی، مائده رحمانی، مهدی قاسمی، حمید زنگی آبادی زاده

    بروز سرطان سینه در طول سال ها به دلیل تغییر در شیوه زندگی و محیط به طور پیوسته افزایش یافته است. در حال حاضر، سرطان سینه یکی از علل اصلی مرگ و میر ناشی از سرطان در میان زنان است که آن را به یک نگرانی حیاتی برای سلامت عمومی جهانی تبدیل کرده است. بنابراین، ایجاد یک سیستم تشخیص خودکار سرطان سینه در جامعه پزشکی اهمیت بالایی دارد. در این مقاله به مفاهیم عمومی سرطان سینه، داده کاوی و یادگیری ماشین و همچنین به معرفی تکنیکهای مفید یادگیری ماشین که برای طبقه بندی و پیش بینی سرطان سینه میتواند مفید باشد پرداخته شد. در بخش اصلی مقاله ارزیابی و مقایسه این تکنیکها بر اساس معیارهای مناسب دقت، صحت، بازخوانی، خاصیت و امتیاز F1 مرور و انجام شد. نتایج ارزیابی این طبقهبندها در تحقیقاتی که آزمایشهای آن روی مجموعه داده های استاندارد انجام شد، نشان داد که از بین تکنیکهای معرفی شده ماشین بردار پشتیبان، جنگل تصادفی و درخت تصمیم به ترتیب به نسبت بقیه طبقه بندها دارای پیشبینی قویتری است.

    کلید واژگان: یادگیری ماشین، طبقه بندی، داده ها، سرطان سینه، هوش مصنوعی
    Farshid Vazifehdoost *, Somayeh Kadkhoda Dehkhani, Maedeh Rahmani, Mehdi Ghasemi, Hamid Zangiabadi Zadeh

    The incidence of breast cancer has been increasing steadily over the years due to changes in lifestyle and environment. Currently, breast cancer is one of the leading causes of cancer mortality among women, making it a critical concern for global public health. Therefore, the development of an automated breast cancer detection system is of great importance in the medical community. This article discusses the general concepts of breast cancer, data mining, and machine learning, and also introduces useful machine learning techniques that can be useful for breast cancer classification and prediction. In the main part of the article, the evaluation and comparison of these techniques were reviewed and performed based on appropriate criteria of accuracy, precision, recall, specificity, and F1 score. The results of the evaluation of these classifiers in research whose experiments were conducted on standard datasets showed that among the introduced techniques, support vector machine, random forest, and decision tree, respectively, have stronger prediction than the other classifiers.

    Keywords: Machine Learning, Classification, Data, Breast Cancer, Artificial Intelligence
  • Fazal Tariq *, Muhammad Tufail, Taj Rehman
    In the light of growing frequency of natural disasters, social networking sites are now used for polling perception and evaluating governmental performance. The aim of this study is to examine the effects of negative and positive social media discussions to government responses with the floods disaster of 2010 in Pakistan. This study, being a sentiment analysis of tweets that involves the Pakistan Flood 2010 and Disaster Relief hashtags only, classified public responses as positive, negative, or neutral. The sentiments are transformed into actionable insights using the Enhanced Hybrid Dark Social Analytical Framework (EHDSAF) technique across different areas. The study advances knowledge of how public sentiment shapes government responses by showing that negativity correlates with slower response and revised policies. The majority of the tweets analyzed were neutral (45%), followed by positive (35%), and negative (20%). Negative sentiment tends to be concentrated during the peak crisis period. Higher negative sentiment, particularly in big cities correlates with more immediate and substantial government interventions, indicated by a strong correlation of 0.65. The Pearson correlation coefficient calculated as 0.68, suggests a strong relationship between public sentiment and response. The study therefore establishes social media as an accountability forum that provides real-time feedback to government agencies in the course of calamity management. This paper highlights the effectiveness of using sentiment analysis to update the approach by which disasters are responded to, as well as improve the perception of the public towards government endeavors.
    Keywords: EHDSAF, Twitter, Dark Social Data, API, Sentiment Analysis, GOP, Machine Learning, VADER
  • مهدی نوزاد بناب، جعفر تنها*، محمد مصدری
    سرویس های وب سیستم های نرم افزاری هستند که برای پشتیبانی از ارتباطات ماشین به ماشین قابل اجرا بر روی اینترنت طراحی شده اند. دسته بندی این سرویس ها برای اطمینان از ارائه خدمات قابل اعتماد و کارآمد به کاربران امری ضروری است و نقش مهمی در حوزه های مختلف مانند کشف سرویس، سیستم های توصیه و ترکیب سرویس ایفا می کند. کارگزاران سرویس های وب با توجه به رتبه بندی سرویس ها برپایه پارامتر کیفیت، کاربران را در انتخاب سرویس مناسب از بین سرویس های مشابه کمک می کنند. در رابطه با سرویس های وب، تعداد کمی از مجموعه داده ها مبتنی برکیفیت سرویس های وب در دسترس است. مجموعه داده QWS با نه ویژگی کیفی برای سرویس ها یکی از معروفترین مجموعه داده ها در این زمینه است. با این حال، این مجموعه داده برخی از ویژگی های غیرعملکردی مانند امنیت، قابلیت همکاری،مقیاس پذیری و استحکام را که در هنگام کشف سرویس های وب ممکن است ماهیت حساسی داشته باشند، نادیده گرفته است. در این مقاله، روشی برای بهبود مجموعه داده QWS با استفاده از مهندسی ویژگی ها ارائه گردیده که ویژگی های جدیدی را برپایه ی ویژگی های موجود تولید می نماید. نتایج آزمایشات بر روی الگوریتم نیمه نظارتی SSL-WSC نشان می دهد که رویکرد پیشنهادی در بهبود دسته بندی سرویس های وب نتیجه بخش بوده است، بطوریکه مقادیر معیارهای ارزیابی F1-Score، صحت و دقت به ترتیب 5.05٪، 5.69٪ و 6.92٪ افزایش یافته است.
    کلید واژگان: سرویس های وب، دسته بندی، کیفیت، مهندسی ویژگی، افزایش ویژگی، یادگیری ماشین
    Mehdi Nozad Bonab, Jafar Tanha *, Mohammad Masdari
    Web services, which facilitate machine-to-machine communication over the Internet, require accurate classification for reliable and efficient service delivery. The classification significantly affects service discovery, recommendation systems, and service composition. Web service brokers assist users in selecting the most suitable service based on quality parameters. Currently, only a limited number of datasets focusing on web service quality are available. The QWS dataset, with nine quality features for services, is one of the most prominent datasets in this field. However, this dataset overlooks non-functional attributes such as Security, Interoperability, Scalability, and Robustness, which are essential for discovering web services. This paper proposes enhancing the QWS dataset by using feature engineering to create new features from existing ones. The experimental results on the SSL-WSC algorithm demonstrate that the proposed approach significantly improves the classification of web services. This is evidenced by the 5.05% increase in F1-Score, 5.69% increase in accuracy, and 6.92% increase in precision evaluation criteria.
    Keywords: Web Services, Classification, Quality, Feature Engineering, Machine Learning
  • Fakhroddin Noorbehbahani *, Hooman Hoghooghi Esfahani, Soroush Bajoghli
    The digital era has introduced mental health challenges, especially for youth. Despite increasing awareness, comprehensive analyses of these challenges remain limited. This study collects and examines the prevalence of 15 key mental health challenges related to digital engagement, based on a sample of 555 participants. The prevalence of these challenges varied, with pressures related to parenting, hoarding, and inappropriate content being the most common, affecting 60.13%, 52.76%, and 45.39% of the participants, respectively. The research also highlights gender and age differences, noting that males report higher levels of issues like FOMO and Nomophobia compared to females. Adults (18+) face more severe challenges, such as memory decline, while younger individuals report fewer problems. Correlation analysis revealed significant relationships between several mental health challenges, such as Nomophobia and TAD (r = 0.68) and FOMO and TAD (r = 0.50), indicating that individuals experiencing one challenge are likely to face others. A decision tree analysis was used to predict mental health challenges by examining the relationships between different mental health conditions, uncovering specific patterns and rules associated with the occurrence of these challenges. Additionally, cluster analysis in this study identified distinct population segments, with 21% of individuals falling into a cluster that experiences severe mental health challenges. The findings suggest that a significant portion of the population is at risk for severe mental health issues, highlighting the need for targeted interventions.
    Keywords: Digital Age, Mental Health Challenges, Statistical Analysis, Machine Learning
  • Milad Baghban *

    The rapid advancement of artificial intelligence (AI) offers new avenues for enhancing the identification, control, and autonomous operation of marine vehicles. This study investigates the application of AI techniques in maritime environments, focusing on object detection, navigation, and autonomous control to support safe and efficient operations in various marine conditions. Key objectives include evaluating machine learning models for identifying and tracking marine vehicles and the development of intelligent control algorithms that can adapt to dynamic oceanic settings. Methods involved training convolutional neural networks (CNNs) on datasets of marine images for object identification and using reinforcement learning (RL) algorithms to optimize the control systems of autonomous marine vehicles. Results demonstrate that CNN-based models achieve high accuracy in vehicle identification, even under challenging visual conditions such as low lighting or occlusion. At the same time, RL-driven control systems adapt effectively to complex, fluctuating marine environments. Simulated and real-world testing indicated that these AI techniques improve vessel maneuverability and response times, leading to more efficient and safer operations. In conclusion, this study highlights the potential of AI to revolutionize marine vehicle identification and control, with implications for enhanced security, efficiency, and sustainability in maritime operations. It is advisable to conduct additional research to improve these models, enabling their application across a wider range of marine environments.

    Keywords: Artificial Intelligence, Machine Learning, Autonomous Navigation, Marine Vehicles, AI Techniques
  • Alireza Rezaei *, Amineh Amini

    In today's world, DDoS attacks are becoming more common and complex; thus, they constitute a great challenge for network security under the auspices of SDN. The research effort described here proposes an integrated hybrid model called "LDA-ML," which leverages some state-of-the-art machine learning methods: LDA, naive bayes, random forest, and logistic regression. We optimize the data analysis process by leveraging LDA for feature selection and dimensionality reduction, followed by a sequential application of the classifiers to exploit their strengths. Evaluated on the CICDDoS-2019 dataset, the proposed model has achieved an outstanding accuracy of 98.98%, indicating the efficacy of the model in correctly classifying benign versus attack traffic. All of the above underlines the robustness of the proposed LDA-ML model, pointing to great potential for its application to continuously improve cybersecurity strategies against DDoS threats in SDN architectures. This holistic approach offers improvements in detection, while it also enriches diagnostic insights-an important contribution to finding effective security solutions in increasingly dynamic network environments.

    Keywords: Ddos Attack, SDN, Cybersecurity, Machine Learning
  • Mohsen Kaveh, Mohammadhadi Zahedi *, Elham Farahani

    The energy sector encompasses essential processes such as the production, distribution, and consumption of energy. Traditionally, these processes have been managed through conventional networks, which often lead to issues such as process fluctuations, increased costs, and inefficiencies. However, the advent of Internet of Energy technology facilitates a transition from traditional to smart networks. In the Internet of Energy, the use of sensors results in the generation of large volumes of data. By employing machine learning to analyze this data, it becomes possible to make accurate predictions in the energy sector, which in turn supports effective decision-making for energy production and distribution. The objective of this study is to analyze data within the Internet of Energy using machine learning techniques, ultimately leading to the development of an artificial intelligence model capable of predicting energy consumption. Initially, previous models will be reviewed, and their outcomes will be compared and analyzed based on scores and evaluation metrics. Finally, a deep neural network model will be introduced, demonstrating an error rate of 0.3. The mean absolute error is reported as 0.4, and the mean square error is 0.3. Despite these advantages, there are also limitations to consider. The data involved in the analysis and prediction process must meet appropriate standards. The significant variability present in industrial processes adds complexity to the environment.

    Keywords: Internet Of Things, Machine Learning, Smart Grid, Data Analysis, Neural Network
  • Alireza Jafarieh, Forouhar Farzaneh, Hamid Behroozi, Mahdi Nouri *, Nazih Mallat
    In this paper, a mmWave antenna is designed and optimized by machine learning to meet 5G requirements. A Surrogate based optimization approach is used to optimize this antenna. The goals of this optimization are antenna gain, bandwidth, and size. The bandwidth of the optimized antenna covers the 27.5 GHz- 38.9 GHz frequency band. This antenna has a wide 3 dB beam width with 90∘ and 178∘ beam width in the E-plane and H-plane, respectively. The realized gain of the antenna is 5 dB in 28 GHz frequency. One of the benefits of this antenna is Its compact size. The total dimension of the antenna is 5.4×5.6 mm2. In addition, an array of this antenna is proposed with 4 elements. The analog beamforming is achieved by means of this array. The 4-element array is simulated in an iPhone package model. Finally, an antenna with a wide beam, wide band, high gain, and small size is achieved within the Ka-band.
    Keywords: Mmwave, Ka Bands, Beamforming, Mobile Communication, Machine Learning
  • Mahmoud R. Shiravand *, Mahtab Ebadati, Pooria Poorahad A.
    Structural reliability analysis (SRA) is associated with complex calculations and large number of simulations. In this paper, machine learning (ML) methods are integrated with SRA to reduce the overall intricacy and computational cost of direct SRA methods, such as the Monte Carlo simulation (MCS) method. An SRA is conducted in this paper on post-tensioned concrete members under the influence of prestress loss, and their reliability indices are obtained through the MCS method. The results of the SRA are used to create a database for data fitting of the ML algorithms. The algorithms are compared to find the most accurate ML model to be applied on the problem at hand. For the SRA, different stochastic parameters with specified probabilistic distributions are considered for the numerical models, and nonlinear dynamic analyses are conducted on them. Using the labeled data resulted from the SRA, five ML algorithms are compared; (i) linear regression, (ii) random forest, (iii) artificial neural network, (iv) k-nearest neighbors, (v) extreme gradient boosting. R-squared and root mean squared error are considered as the metrics used for the comparison of the ML models. Bayesian search is used for hyperparameter optimization of algorithms. The performance of the linear regression algorithm (R2=0.67 and RMSE=0.26) indicates that the SRA problems are highly nonlinear and linear algorithms cannot precisely map the relationships in data. However, the results show that extreme gradient boosting has the finest accuracy with R2=0.9 and RMSE=0.04. Additionally, its predicted values mostly have relative errors of less than ±30%.
    Keywords: Artificial Intelligence, Machine Learning, Supervised Learning, Structural Reliability Analysis
  • Gaddam Advitha, Allada Nagasai Varaprasad, Koti Vennela Khushi, Pullabhotla Vijay, Sukanta Nayak *
    Air pollution emerges as a formidable threat to both public health and environmental integrity, especially in regions undergoing rapid development. In this context, Gujarat, situated in Western India, grapples with escalating air quality degradation attributable to industrialization, vehicular emissions, and agricultural practices. The imperative to accurately forecast Air Quality Indices (AQIs) becomes paramount for the prompt implementation of mitigation measures, thereby safeguarding public well-being. This research delves into the utilization of Machine Learning (ML) algorithms, specifically Random Forest (RF) and XGBoost, to predict AQIs in Gujarat. Four pivotal parameters, PM2.5, PM10, SO2, and NOX, are scrutinized due to their substantial impact on air quality and inclusion in publicly available datasets. Remarkably, both RF and XGBoost models exhibit outstanding performance, surpassing 99% accuracy. This exceptional capability underscores the transformative potential of ML in addressing the complex challenges posed by air pollution. Leveraging the precise predictions of AQI values, these models can catalyze the development of robust early warning systems and guide policymaking endeavors directed at enhancing air quality. Notably, this investigation unveils PM2.5 and PM10 as primary culprits influencing AQI levels in Gujarat, underscoring the urgency for stringent emission control measures targeting these pollutants. Furthermore, the study sheds light on the significant impact of meteorological factors, especially maximum temperature, on AQI fluctuations, necessitating adaptive strategies to counteract climate change's repercussions on air quality.
    Keywords: Air Quality, Machine Learning, Random Forest, Xgboost, AQI Prediction
  • فرنوش کریمی، بهروز ترک لادانی*، بهروز شاهقلی قهفرخی

    با افزایش شدت تهدیدات امنیت سایبری در سطح جهانی، نیاز به آموزش متخصصان امنیتی اهمیت بیشتری یافته است. برنامه های آموزشی به همراه آزمایشگاه ها و انجام تمرین های امنیت سایبری، نقش اساسی در بهبود مهارت های آفندی و پدافندی ایفا می کنند. انجام این تمرین ها، به ویژه در شبکه های عملیاتی که مناسب آزمایش حملات سایبری نیستند، از اهمیت ویژه ای برخوردارند. میدان سایبری، بستر مناسبی برای این تمرین ها فراهم می کنند. یکی از چالش های اساسی در آموزش امنیت سایبری، تطابق برنامه های آموزشی با سطوح مختلف مهارت آموزان است. یادگیری تطبیقی با استفاده از هوش مصنوعی و سیستم های پیشنهاددهنده می تواند راه حل مناسبی برای ارائه آموزش شخصی سازی شده باشد. در این پژوهش، با تمرکز بر میدان سایبری کایپو، به بررسی امکان جایگزینی یا تکمیل نقش مربی با یک عامل پیشنهاد دهنده مبتنی بر هوش مصنوعی پرداخته شده است. هدف از این تحقیق، کاهش نیاز به دخالت انسانی و افزایش کارایی فرآیند آموزش است. بدین منظور، از اطلاعات جمع آوری شده در میدان سایبری کایپو که توسط دانشگاه ماساریک توسعه یافته، استفاده شده و مدل های مختلف یادگیری ماشین به کار گرفته شده است تا فرآیند آموزش به صورت خودکار و بهینه انجام شود. نتایج این پژوهش نشان می دهد که استفاده از هوش مصنوعی می تواند به بهبود عملکرد سیستم های آموزشی و کاهش زمان ارزیابی کمک کند.

    کلید واژگان: یادگیری تطبیقی، آموزش امنیت سایبری، میدان سایبری کایپو، یادگیری ماشین، یادگیری تقویتی
    Farnoosh Karimi, Behrouz Tork Ladani*, Behrouz Shahgholi Ghahfarokhi

    As the intensity of global cybersecurity threats continues to rise, the need for training security professionals has gained greater significance. Educational programs, complemented by laboratories and the execution of cybersecurity exercises, play a fundamental role in enhancing both offensive and defensive capabilities. The execution of such exercises is particularly crucial in operational networks, where testing cyberattacks may not be feasible. Cyber ranges offer an appropriate platform for conducting these exercises. A primary challenge in cybersecurity education is aligning training programs with the diverse skill levels of learners. Adaptive learning, powered by artificial intelligence and recommendation systems, can provide an effective solution for delivering personalized instruction. This study focuses on the KYPO Cyber Range to examine the potential of substituting or augmenting the role of the instructor with an AI-based recommendation agent. The objective of this research is to minimize human intervention and improve the efficiency of the training process. To this end, data collected from the KYPO Cyber Range, developed by Masaryk University, has been utilized, and various machine learning models have been applied to automate and optimize the training process. The results of this research indicate that the integration of artificial intelligence can enhance the performance of educational systems and reduce evaluation time.

    Keywords: Adaptive Learning, Learning Cybersecurity, KYPO Cyber Range, Machine Learning, Reinforcement Learning
  • لادن ریاضی *

    پیش بینی قیمت سهام یک کار پیچیده است که برای قرن ها سرمایه گذاران و تحلیلگران مالی را مجذوب خود کرده است. با افزایش هوش مصنوعی و یادگیری ماشینی، محققان مدل های مختلفی را برای پیش بینی قیمت سهام، استفاده از داده های تاریخی و روند بازار توسعه داده اند. هدف این مدل ها شناسایی الگوها و همبستگی های بین شاخص های اقتصادی، اخبار بازار و قیمت سهام برای پیش بینی دقیق است. با وجود اینکه در زمینه‏ی پیش بینی قیمت سهام، تحقیقات گسترده‏ای صورت گرفته، ولی با این حال با افزایش استفاده از فناوری‏های نوین ضرروت انجام این فعالیت‏ها همچنان پابرجاست، در این مقاله روشی مبتنی بر تلفیق روش‏های تکامل تفاضلی  و جنگل تصادفی برای پیش بینی قیمت سهام ارائه شده است. در روش پیشنهادی جنگل تصادفی می تواند به طور موثر قیمت های بازار سهام را با مدیریت و بررسی داده ها پیش بینی کند و روش تکامل تفاضلی با انتخاب بهترین مقادیر برای پارامتر های جنگل تصادفی به بهبود دقت پیش بینی های بازار سهام کمک می کند. نتایج حاصل از پیاده سازی این روش بر روی داده های شرکت AMD بیانگر این است که تا حدود میانگین 74% نسبت به روش‏های جنگل تصادفی، شبکه عصبی و رگرسیون خطی دارای کاهش خطای آموزشی و همچنین تا حدود میانگین 55% نسبت به روش‏های ذکر شده دارای کاهش خطای تست بوده است. این موضوع برتری و موثر بودن روش مورد نظر نسبت به راهکارهایی مقایسه شده را نشان می دهد.

    کلید واژگان: جنگل تصادفی، تکامل تفاضلی، سری زمانی، یادگیری ماشین
    * Ladan Riazi

    Predicting stock prices is a complex task that has fascinated investors and financial analysts for centuries. With the rise of artificial intelligence and machine learning, researchers have developed various models to forecast stock prices, leveraging historical data and market trends. These models aim to identify patterns and correlations between economic indicators, market news, and stock prices to make accurate predictions. Although extensive research has been done in the field of stock price forecasting, but with the increase in the use of new technologies, it is still necessary to carry out these activities. In this paper, a method based on the integration of differential evolution and random forest are presented for stock price prediction. In the proposed method, random forest can effectively predict stock market prices by reviewing data, and the differential evolution method helps to improve the accuracy of stock market forecasts by choosing the best values ​​for random forest parameters. The results of the implementation of this method on the data of AMD show that up to an average of 74% compared to the methods of random forest, neural network and linear regression with a reduction in training error and also up to an average of 55% compared to the method The mentioned ones have reduced the test error. This issue shows the superiority and effectiveness of the proposed method compared to the compared solutions.

    Keywords: Stochastic Forest, Differential Evolution, Time Series, Machine Learning
  • ندا یعقوبی، حسن معصومی، محمدحسین فاتحی، فرشته اشتری، راحله کافیه*

    مولتیپل اسکلروزیس یا ام اس (MS)  بیماری مزمن ناشی از سیستم ایمنی است که بر سیستم عصبی مرکزی تاثیر می گذارد و منجر به اختلالات مختلف از جمله اختلالات بینایی می شود. تشخیص زودهنگام  ام اس برای درمان ، حیاتی است. اسکن لیزری افتالموسکوپی (SLO) یک تکنیک غیرتهاجمی است که تصاویر شبکیه با کیفیت بالا را ارائه می دهد و نویدبخش تشخیص زودهنگام ام اس است. این مطالعه یک رویکرد مبتنی بر رگ را با استفاده از شبکه ی (LSTM) برای تشخیص MS در تصاویر SLO مورد بررسی قرار می دهد. این مطالعه 106 فرد سالم (HCs) و 39 بیمار ام اس (78 چشم) را پس از اجرای اقدامات کنترل کیفیت و حذف تصاویر بی کیفیت یا آسیب دیده، که در مجموع 265 تصویر (73 MS و 192 HC) به دست آمد.  رویکرد ما برای تشخیص زودهنگام ام اس در تصاویر SLO با استفاده از شبکه ی LSTM می باشد. این رویکرد شامل دو مرحله کلیدی است: 1) پیش آموزش یک شبکه عصبی عمیق بر روی یک مجموعه داده منبع و 2) تنظیم دقیق شبکه بر روی مجموعه داده هدف متشکل از تصاویر SLO. ما بخش بندی عروق را در تشخیص ام اس و اثربخشی روش پیشنهادی خود را در بهبود مدل های تشخیصی بررسی می کنیم. مطالعه حاضر هنگامی که بر روی مجموعه داده آزمایشی شامل تصاویر SLO ارزیابی می شود، به نرخ دقت چشمگیر 97.44% دست می یابد. با انجام آزمایش هایی بر روی مجموعه داده های SLO و استفاده از رویکرد مبتنی بر رگ با LSTM، یافته های تجربی ما نشان از دقت مناسب مدل پیشنهادی دارد.

    کلید واژگان: مولتیپل اسکلروزیس، اسکن لیزری افتالموسکوپی، آنالیز عروق، تقسیم بندی تصویر، یادگیری ماشینی، LSTM
    Neda Yaghoubi, Hassan Masumi, Mohammadhossein Fatehi, Fereshteh Ashtari, Rahele Kafieh *

    Multiple Sclerosis (MS) is a chronic immune-mediated condition affecting the central nervous system, often resulting in various disturbances, including visual impairments. The early and accurate diagnosis of MS is critical for effective treatment and management. Scanning Laser Ophthalmoscopy (SLO) is a non-invasive technique that offers high-quality retinal images and holds promise for early MS detection. This study explores a vessel-based approach using Long Short-Term Memory (LSTM) networks to detect MS in SLO images. The study enrolled 106 Healthy Controls (HCs) and 39 MS patients (78 eyes), after implementing quality control measures and excluding poor-quality or damaged images, resulting in a total of 265 images (73 MS and 192 HC). We present a novel approach for the early detection of MS in SLO images using LSTM networks. This approach involves two key steps: 1) Pre-training a deep neural network on a source dataset and 2) Fine-tuning the network on the target dataset consisting of SLO images. We examine the significance of vessel segmentation in MS detection and investigate the effectiveness of our proposed method in enhancing diagnostic models. Our approach achieves an impressive accuracy rate of 97.44% when evaluated on a test dataset comprising SLO images. By conducting experiments on SLO datasets and employing the vessel-based approach with LSTM, our empirical findings confirm that this method facilitates early MS detection with exceptional accuracy. These models demonstrate the capability to accurately identify the disease with high precision and appropriate sensitivity.

    Keywords: Multiple Sclerosis, Scanning Laser Ophthalmoscopy, Vessel Analysis, Image Segmentation, Machine Learning, Long Short-Term Memory (LSTM)
  • Mehrnaz Moudi*, Arefeh Soleimani, Amirhossein Hojjati Nia

    Today, the scope of using the Internet of Things is growing by taking science and technology as the first place in human life, and as these networks get bigger, more data are exchanged. It performs high-speed data exchanges on the Internet and in a pre-defined network. The more the Internet of Things penetrates into people's lives, the more important data it transmits. This causes attackers to draw attention to these data, and Internet of Things network devices that have limited resources are exposed to attacks. With the complexity of hardware and software for the ease of human's use, naturally more intelligent attacks will happen, which is the reason of presenting many methods in this field. For this reason, in this article, we are going to discuss the most important methods used in intrusion detection systems based on deep learning and machine that can identify these interruptions. In this article, we have compared 46 articles from 2020 to 2024 based on the type of dataset used, the type of classification (binary or multi-class) and the accuracy rates obtained from each method, and we have been able to see a comprehensive overview for researchers who intend to work in IoT data security. According to the obtained results, if the proposed method is implemented in binary form, it can achieve better accuracy than multi-class.

    Keywords: Internet Of Things, Artificial Intelligence, Machine Learning, Deep Learning, Intrusion Detection Systems
  • Haider Abdulzahra Saad Alsaide, Mohammad Reza Soltanaghaei *, Wael Hussein Zayer Al-Lami, Razieh Asgarnezhad

    The detection of defects is important in quality control in manufacturing. These defects raise the costs incurred by enterprises, compress the service life of simulated products, and result in the expansive destruction of resources, thereby significantly harming people and their safety. Defect detection and classification need to be feasted as unique problems associated with the field of artificial vision. We categorize the defects like electronic components, pipes, welded parts, textile materials, etc. We express artificial visual processing techniques aimed at comprehending the charged picture in a mathematical/analytical manner. Recent mainstream and deep-learning techniques in defect detection are studied with their features, stability, and weaknesses explained. We resume with a survey of textural defect detection based on statistical, structural, and other methods. We investigate the application of ultrasonic testing, filtering, deep learning, machine vision, and other technologies utilized for defect detection to offer a new classification. In addition, high precision, high positioning, fast detection, and small objects through examination are the biggest challenges in applying quality detection.

    Keywords: Machine Learning, Deep Learning, Defect Detection
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال