particle swarm optimization
در نشریات گروه فناوری اطلاعات-
An efficient data aggregation approach in wireless sensor networks (WSNs) is to abstract the network data into a model. In this regard, regression modeling has been addressed in many studies recently. If the limited characteristics of the sensor nodes are omitted from consideration, a common regression technique could be employed after transmitting all the network data from the sensor nodes to the fusion center. However, it is not practical nor efferent. To overcome this issue, several distributed methods have been proposed in WSNs where the regression problem has been formulated as an optimization based data modeling problem. Although they are more energy efficient than the centralized method, the latency and prediction accuracy needs to be improved even further. In this paper, a new approach is proposed based on the particle swarm optimization (PSO) algorithm. Assuming a clustered network, firstly, the PSO algorithm is employed asynchronously to learn the network model of each cluster. In this step, every cluster model is learnt based on the size and data pattern of the cluster. Afterwards, the boosting technique is applied to achieve a better accuracy. The experimental results show that the proposed asynchronous distributed PSO brings up to 48% reduction in energy consumption. Moreover, the boosted model improves the prediction accuracy about 9% on the average.
Keywords: Wireless sensor network, Distributed optimization, Particle swarm optimization, Regression, Boosting -
تخمین صحیح تلاش لازم برای توسعه نرم افزار، نقش مهمی در موفقیت این قبیل پروژه ها دارد. تاکنون پژوهشهای متعددی برای تخمین تلاش انجام شده است، لیکن بهبود دقت این محاسبه هنوز از چالشهای مطرح است. در این مقاله، راهکاری مبتنی بر الگوریتمهای فراابتکاری برای حل این چالش ارایه شده است. روش کار به این صورت است که ابتدا از الگوریتم جستجوی فاخته به منظور انتخاب صحیح ویژگیهای نرم افزاری مطرح در تخمین تلاش استفاده می شود. سپس جواب های به دست آمده با استفاده از الگوریتم بهینه سازی ازدحام ذرات بیشتر مورد واکاوی قرار می گیرد. ایده این کار آن است که اجرای متوالی الگوریتم های مذکور باعث جستجوی دقیق تر فضای مساله شده و امکان دسترسی به بهینه سراسری، یعنی ویژگیهای بهینه را افزایش دهد. در نهایت، ویژگیهای انتخاب شده به عنوان پارامترهای ورودی مدل پسا معماری کوکومو2 مورد استفاده قرار گرفته و تلاش لازم، محاسبه می شود. راهکار پیشنهادی بر روی دو مجموعه داده کوکومو81 و کوکوموناسا مورد بررسی قرار گرفته و به منظور ارزیابی آن از دو معیار متوسط شدت خطای نسبی و درصد پیش بینی استفاده شده است. نتایج به دست آمده از آزمایش های این راهکار و مقایسه آن با پژوهشهای پیشین نشان می دهد که در کوکومو81، مقدار متوسط شدت خطای نسبی به اندازه 177/0 کاهش یافته و درصد پیش بینی به ترتیب در سه حالت 25، 30 و 40 درصد، به اندازه 87/7%، 04/8% و 66/8% افزایش یافته است. همچنین در کوکوموناسا، مقدار متوسط شدت خطای نسبی به اندازه 151/0 کاهش یافته و درصد پیش بینی به ترتیب در سه حالت 25، 30 و 40 درصد، به اندازه 55/7%، 98/7% و 11/8% افزایش یافته است.کلید واژگان: تخمین تلاش، توسعه نرم افزار، جستجوی فاخته، بهینه سازی ازدحام ذراتAccurate estimation of required effort for software development has an important role in success of such projects. So far, a lot of research work has been conducted to estimate the effort, but improving the precision of this calculation is still a challenge. In this paper, an approach is proposed based on the metaheuristic algorithms to solve this challenge. The procedure is as follows. First, the Cuckoo Search algorithm is used in order to select the correct software features in estimating effort. Then, the results are further analyzed by Particle Swarm Optimization algorithm. The idea is that the sequential application of these algorithms has led to more accurate search of the problem space and possibility of achieving the global optimum, i.e. the best features is increased. Finally, the selected features are used as the input parameters of the COCOMO II post-architecture model and the effort is estimated. The proposed approach is evaluated on two datasets of COCOMO 81 and COCOMO NASA and in order to its evaluation, two metrics, namely the median magnitude of relative error and the percentage of prediction are used. The results obtained from the experiments of this approach and their comparison to the results of the previous works show that on the COCOMO 81, the value of the median magnitude of relative error decreased by 0.177 and the percentage of prediction, for the three values of 25, 30 and 40 percent, increased by 7.87%, 8.04% and 8.66%, respectively. Furthermore, on the COCOMO NASA, the value of the median magnitude of relative error decreased by 0.151 and the percentage of prediction, for the three values of 25, 30 and 40 percent, increased by 7.55%, 7.98% and 8.11%, respectively.Keywords: Effort Estimation, Software Development, Cuckoo Search, Particle Swarm Optimization
-
Evolutionary algorithms are among the most powerful algorithms for optimization, Firefly algorithm (FA) is one of them that inspired by nature. It is an easily implementable, robust, simple and flexible technique. On the other hand, Integration of this algorithm with other algorithms, can be improved the performance of FA. Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) are suitable and effective for integration with FA. Some method and operation in GSA and PSO can help to FA for fast and smart searching. In one version of the Gravitational Search Algorithm (GSA), selecting the K-best particles with bigger mass, and examining its effect on other masses has a great help for achieving the faster and more accurate in optimal answer. As well as, in Particle Swarm Optimization (PSO), the candidate answers for solving optimization problem, are guided by local best position and global best position to achieving optimal answer. These operators and their combination with the firefly algorithm (FA) can improve the performance of the search algorithm. This paper intends to provide models for improvement firefly algorithm using GSA and PSO operation. For this purpose, 5 scenarios are defined and then, their models are simulated using MATLAB software. Finally, by reviewing the results, It is shown that the performance of introduced models are better than the standard firefly algorithm.
Keywords: K-best Attractive Firefly, Global, Local Best Position, Gravitational Search Algorithm (GSA), ImprovedFirefly Algorithm (IFA), Movement in Algorithm, Particle Swarm Optimization -
Cardiac resynchronization therapy (CRT) improves cardiac function in patients with heart failure (HF), and the result of this treatment is decrease in death rate and improving quality of life for patients. This research is aimed at predicting CRT response for the prognosis of patients with heart failure under CRT. According to international instructions, in the case of approval of QRS prolongation and decrease in ejection fraction (EF), the patient is recognized as a candidate of implanting recognition device. However, regarding many intervening and effective factors, decision making can be done based on more variables. Computer-based decision-making systems especially machine learning (ML) are considered as a promising method regarding their significant background in medical prediction. Collective intelligence approaches such as particles swarm optimization (PSO) algorithm are used for determining the priorities of medical decision-making variables. This investigation was done on 209 patients and the data was collected over 12 months. In HESHMAT CRT center, 17.7% of patients did not respond to treatment. Recognizing the dominant parameters through combining machine recognition and physician’s viewpoint, and introducing back-propagation of error neural network algorithm in order to decrease classification error are the most important achievements of this research. In this research, an analytical set of individual, clinical, and laboratory variables, echocardiography, and electrocardiography (ECG) are proposed with patients’ response to CRT. Prediction of the response after CRT becomes possible by the support of a set of tools, algorithms, and variables.
Keywords: Cardiac resynchronization therapy, Neural Networks, Particle swarm optimization, HESHMAT, CRT dataset, Machine Learning -
نشریه نوآوری های فناوری اطلاعات و ارتباطات کاربردی، سال یکم شماره 1 (پیاپی -1، پاییز 1398)، صص 45 -52
سیستم های کنترل مبتنی بر اینترنت روزبه روز در حال رشد و گسترش هستند. تاخیر اطلاعات مبادله شده مبتنی بر شبکه یکی از مهم ترین موضوعاتی است که این سیستم ها با آن مواجه هستند. پیش بینی تاخیر می تواند کاربر را از تاخیر اطلاعات و همچنین اطلاعات ازدست رفته آگاه کند. پیش بینی تاخیر به صورت دقیق مسئله ای پیچیده و دشوار است که دغدغه بسیاری از محققان بوده و الگوریتم های متعددی جهت حل این مسئله ارایه شده است. در این پژوهش مدلی از بهینه سازی ارایه گردیده که در آن از الگوریتم سیستم ایمنی مصنوعی و ازدحام ذرات به عنوان ابزار بهینه سازی و از نرم افزار مطلب به عنوان ابزار شبیه ساز جهت پیش بینی تاخیر در سیستم های کنترل استفاده شده است. مقایسه نتایج حاصل از الگوریتم سیستم ایمنی مصنوعی با الگوریتم ازدحام ذرات روی داده های یکسان، کارایی و برتری سیستم ایمنی مصنوعی را چه ازنظر سرعت همگرایی و چه ازنظر کیفیت پاسخ نشان می دهد.
کلید واژگان: زمان تاخیر، پیش بینی تاخیر، کنترل مبتنی بر شبکه، سیستم ایمنی مصنوعی، بهینه سازی ازدحام ذرات، همگراییJournal of Innovations of Aplied Information and Communication Technology, Volume:1 Issue: 1, 2020, PP 45 -52Control systems based on internet are developing day by day. These systems are faced with many practical difficulties and challenges. Exchanged Information delay through the network is one of the most important issues of these systems and delay forecasting can make the user aware about the delays and missed data. As a result, the security system can prevent the cyber attacks. Predicting delays accurately, is a complex and difficult problem which has been studied by researchers, and several algorithms have been proposed to solve this problem. Artificial Immune System (AIS) and Particle Swarm Optimization (PSO) are two meta-heuristic methods based on stochastic search that has been developed to solve optimization problems. In this paper, the optimization model is presented. The AIS and PSO has been used as tools for optimization and the “Matlab” software has been utilized as a simulating tool to pridicting delays. In systems Comparing the results of AIS and PSO algorithm on the same data shows the efficiency and superiority of the AIS, both in terms of convergence speed and quality of response.
Keywords: Time delay, Delay forecast, Control via the Internet, Artificial Immune System, particle swarm optimization, convergence -
Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are the imaging techniques for detection of Glioblastoma. However, a single imaging modality is never adequate to validate the presence of the tumor. Moreover, each of the imaging techniques represents a different characteristic of the brain. Therefore, experts have to analyze each of the images independently. This requires more expertise by doctors and delays the detection and diagnosis time. Multimodal Image Fusion is a process of generating image of high visual quality, by fusing different images. However, it introduces blocking effect, noise and artifacts in the fused image. Most of the enhancement techniques deal with contrast enhancement, however enhancing the image quality in terms of edges, entropy, peak signal to noise ratio is also significant. Contrast Limited Adaptive Histogram Equalization (CLAHE) is a widely used enhancement technique. The major drawback of the technique is that it only enhances the pixel intensities and also requires selection of operational parameters like clip limit, block size and distribution function. Particle Swarm Optimization (PSO) is an optimization technique used to choose the CLAHE parameters, based on a multi objective fitness function representing entropy and edge information of the image. The proposed technique provides improvement in visual quality of the Laplacian Pyramid fused MRI and CT images.
Keywords: Glioblastoma, Laplacian Pyramid, Image Fusion, Image Enhancement, Contrast Limited Adaptive Histogram Equalization, Particle Swarm Optimization -
Abstract The rapid growth in demand for computing power has led to a shift towards a cloud-based model relying on virtual data centers. In order to meet the demand of cloud computing clients, cloud service providers need to maintain service quality parameters at optimum levels. This paper presents a hybrid algorithm dubbed PSOBAT-Greedy, which is expected to reduce cost and time while enhancing the efficiency of resources. The main idea behind the newly proposed algorithm is to find an optimal weight for local and global search using Range and Tuning functions as an important solution overcoming various problems in task scheduling and provide the right response within an acceptable time. The new hybrid algorithm is less time-consuming and costly than the other two algorithms. As compared to particle swarm optimization (PSO) algorithm and combined particle swarm optimization and bat algorithm (PSOBat), resource efficiency improves by 15% and 5%, respectively. Keywords: Quality of Service, Cloud Computing, Particle Swarm Optimization, Bat Algorithm
Keywords: Quality of Service, cloud computing, particle swarm optimization, Bat algorithm -
با پیشرفت روز افزون علم، همواره با مسائل جدیدی در دنیای واقعی روبرو میشویم که نیاز به الگوریتم بهینه سازی با قابلیت انطباق سریع با محیط در حال تغییر با زمان و غیرقطعی را بیشتر نمایان می کند. در این گونه مسائل شرایط همواره بگونه ای پیش می رود که مکان و مقدار بهینه در طول زمان تغییر می یابد، از این رو الگوریتم بهینه سازی باید توانایی انطباق سریع با شرایط متغیر را دارا باشد. در این مقاله الگوریتم جدیدی بر مبنای الگوریتم بهینه سازی ذرات به نام الگوریتم انطباقی بهینه سازی ذرات افزایشی کاهشی، پیشنهاد شده است. این الگوریتم همواره در روند بهینه سازی به طور انطباقی با کاهش یا افزایش تعداد ذرات الگوریتم و محدوده جستجو موثر توانایی یافتن و دنبال کردن تعداد بهینه متغیر با زمان در محیط های غیرخطی و پویایی که تغییرات آن قابل آشکارسازی نیست، را دارا می باشد. علاوه بر این تعاریف جدیدی به نام ناحیه جستجو متمرکز با هدف برجسته کردن فضاهای امیدبخش برای سرعت بخشیدن به فرایند جستجوی محلی و جلوگیری از همگرایی زودرس و شاخص موفقیت به عنوان معیاری برای چگونگی رفتار ناحیه جستجو متمرکز نسبت به شرایط محیطی، تعریف شده است. نتایج حاصل از الگوریتم پیشنهادی بر روی تابع محک قله های متحرک ارزیابی شده و با نتایج چندین الگوریتم معتبر مقایسه گردیده است. نتایج نشان دهنده تاثیر مثبت مکانیزم های انطباقی بکار گرفته شده از جمله کاهش و افزایش ذرات و محدوده جستجو بر زمان یافتن و دنبال کردن چندین بهینه در مقایسه با سایر الگوریتم های بهینه سازی مبتنی بر چند جمعیتی می باشد.کلید واژگان: کاهش و افزایش انطباقی ذرات، شعاع جستجو انطباقی، مسائل بهینهسازی پویا (DOPs)، جستجوی محلی، چند جمعیتی، الگوریتم بهینهسازی ذراتScience progress has introduced new issues into the world requiring optimization algorithm with fast adaptation with uncertain environment changing with time. In these issues, location and optimized value change over time, so optimization algorithm should be capable of fast adaptation with variable conditions. This study has proposed a new algorithm based on particle optimization algorithm called Adaptive Increasing/Decreasing PSO. This algorithm, adaptively with an increase and decrease in the number of algorithm particles and effective search limit, is capable of searching and finding optimized number changed with time in non-linear and dynamic environments with undetectable changes. Also, a new definition, focused search zone, is provided for signalizing hopeful areas in order to accelerate local search process and prevent premature convergence, and success index as an indicator of the behavior of centralized search area in relation to environmental conditions. Results of the proposed algorithm on the moving peaks benchmark were assessed and compared with the results of some other studies. Results show positive effects of adaptive mechanisms such as a decrease and an increase in the particles and search limit on the duration of searching and finding optimization in comparison with other multi-population based optimization algorithms.Keywords: Adaptive Increasing, Decreasing Particles, Adaptive Search Radius, Dynamic Optimization Problems (DOPs), Local Search, Multi-population, Particle Swarm Optimization
-
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two negative selection based algorithms are proposed for two-class and multi-class classification problems; using a Gaussian mixture model which is fitted on normal space to create a flexible boundary between self and non-self-spaces, by determining the dynamic subsets of effective detectors to solve the problem of data classification. Initialization of effective parameters such as the detection threshold, the maximum number of detectors etc. for each dataset, is one of the challenges in negative selection based classification algorithms, which affects the precision and accuracy of the classification; therefore, an adaptive and optimal calculation of these parameters is necessary. To overcome this problem, the particle swarm optimization algorithm has been used to properly set the parameters of the proposed methods. The experimental results showed that using a Gaussian mixture model and dynamic adjustment of parameters such as optimum number of Gaussian components according to the shape of the boundaries, creation of appropriate number of detectors, and also automatic adjustment of the training and testing thresholds, using particle swarm optimization algorithm as well as utilization of a combinatorial objective function has led to a better classification with fewer detectors. The proposed algorithms showed competitive performance compared with some of the existing classification algorithms, including several immune-inspired models, especially negative selection ones, and other traditional classification methods.Keywords: Classification, Negative Selection Algorithm, Gaussian Mixture Model, particle swarm optimization, Flexible Boundaries
-
Journal of Advances in Computer Engineering and Technology, Volume:4 Issue: 1, Winter 2018, PP 7 -12Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software projects requires tools and means helping software project managers confront with challenges. The estimation of effort required for software development is among such important challenges. In this study, a neural-network-based architecture has been proposed that makes use of PSO algorithm to increase its accuracy in estimating software development effort. The architecture suggested here has been tested by several datasets. Furthermore, similar experiments were done on the datasets using various widely used methods in estimating software development. The results showed the accuracy of the proposed model. The results of this research have applications for researchers of software engineering and data mining.Keywords: Development effort estimation, Nerual Networks, Particle swarm optimization, software project
-
شبکه های بین خودرویی زیرمجموعه ای از شبکه های سیار موردی می باشد که در آن خودروها به عنوان گره های شبکه محسوب می شوند. تفاوت اصلی آن با شبکه های سیار موردی در تحرک سریع گره ها است که باعث تغییر سریع توپولوژی در این شبکه می شود. تغییرات سریع توپولوژی شبکه یک چالش بزرگ برای مسیریابی محسوب می شود که برای مسیریابی در این شبکه ها، پروتکل های مسیریابی باید قوی و قابل اعتماد باشد. یکی از پروتکل های مسیریابی شناخته شده در شبکه های بین خودرویی، پروتکل مسیریابی AODV است. اعمال این پروتکل مسیریابی بر روی شبکه های بین خودرویی نیز دارای مشکلاتی می باشد که با افزایش مقیاس شبکه و تعداد گره ها، تعداد پیام های کنترلی در شبکه افزایش می یابد. یکی از روش های کاهش سربار در پروتکل AODV، خوشه بندی کردن گره های شبکه است. در این مقاله برای خوشه بندی کردن گره ها از الگوریتم تغییریافته K-Means و برای انتخاب سر خوشه از الگوریتم ازدحام ذرات استفاده شده است. نتایج بدست آمده از روش پیشنهادی باعث بهبود بار مسیریابی نرمال شده و افزایش نرخ تحویل بسته در مقایسه با پروتکل مسیریابی AODV شده است.کلید واژگان: شبکه های بین خودرویی، پروتکل مسیریابی AODV، خوشه بندی، الگوریتم ازدحام ذراتVehicular Ad hoc networks are a subset of mobile Ad hoc networks in which vehicles are considered as network nodes. Their major difference is rapid mobility of nodes which causes the quick change of topology in this network. Quick changes in the topology of the network are considered as a big challenge For routing in these networks, routing protocols must be robust and reliable. AODV Routing protocol is one of the known routing protocols in vehicular ad hoc networks. There are also some problems in applying this routing protocol on the vehicular ad hoc networks. The number of control massages increases with increasing the scale of the network and the number of nodes . One way to reduce the overhead in AODV routing protocol is clustering the nodes of the network. In this paper , the modified K-means algorithm has been used for clustering the nodes and particle swarm optimization has been used for selecting cluster head. The results of the proposed method improved normalized routing load and the increase of the packet delivery rate compared to AODV routing protocol.Keywords: vehicular ad, hoc networks, AODV routing protocol, clustering, particle swarm optimization
-
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to appropriate resources. The proposed method has less Makespan and price. In addition to implementing a grid computing system, the proposed method which is using three standard test functions in evolutionary multi-objective optimization is evaluated. In this paper, the number of elements in the assessment of the Pareto optimizes set, uniformity and error. The results show that this Search method has more optimization in particle number density and high accuracy with less error than the MOPSO and can be replaced as an effective solution for solving multi-objective optimization.Keywords: Task scheduling, load balancing, multi-objective optimization, particle swarm optimization, guide select, guide remove, Distance density
-
در سال های اخیر، استفاده از الگوریتم های فرااکتشافی در مسائل مختلف مورد توجه قرار گرفته است. الگوریتم های فرااکتشافی در حل مسائل مختلف، کارایی و عملکرد متفاوتی از خود نشان می دهند. یک الگوریتم فرااکتشافی ممکن است برای حل یک مسئله خاص از دیگر الگوریتم ها عملکرد بهتر و در یک مسئله دیگر عملکرد ضعیفتری از خود نشان دهند. در این تحقیق عملکرد الگوریتم های مختلف فرااکتشافی برای یک مسئله خاص که کشف کلیدرمز در الگوریتم رمزنگاری ویجینر است مورد بررسی قرار گرفته و عملکرد الگوریتم های مختلف فرااکتشافی از نظر دقت نتایج حاصل و سرعت همگرایی، مورد تحلیل رمز قرار خواهد گرفت و بهترین الگوریتم انتخاب می شود.کلید واژگان: تحلیل رمز، الگوریتم رمزنگاری ویجینر، الگوریتم ژنتیک، الگوریتم زنبور عسل، الگوریتم بهینه سازی پرتو ذرات، الگوریتم بهینه سازی پرتو ذرات مشارکتی، الگوریتم ذوب فلزات، الگوریتم تپه نوردی، کلیدرمزIn recent years, the use of Meta-heuristic algorithms on various problem taken into consideration. Meta-heuristic algorithms in solving various problem, different performance show. An Meta-heuristic algorithm to solve a particular problem may have better performance than other algorithms and poorer performance have in other issue. In this study the performance of Meta-heuristic algorithms for a specific problem that explore cryption key Vigenere encryption algorithm will be examined. And Meta-heuristic different algorithms performance in terms of accuracy and speed of convergence of the results will be cryptanalyzed and the best algorithm is selected.Keywords: Cryptanalysis, Vigenere Encryption Algorithm, Genetic Algorithm, Artifical Bee Colony, Particle Swarm Optimization, Modified Particle Swarm Optimization, Simulated Annealing, Hill Claimate, cryption key
-
کارآیی روش های بهینه سازی با استفاده از الگوریتم های ابتکاری، تمایل محققین را برای استفاده از آن ها در مسائل پیچیده مهندسی به صورت چشمگیری افزایش داده است. در این مقاله، مقایسه عملکرد دو الگوریتم مبتنی بر هوش جمعی PSO و IPO و روش تکاملی GA برای محاسبه پهنای کانال (w) ترانزیستورها در جهت مجتمع سازی بهتر و به منظور بهبود توان مصرفی و تاخیر مدار تغییر دهنده سطح (LEVEL SHIFTER) در تغییر سطح ولتاژ 0.4 به 3 ولت با تکنولوژیCMOS 0.35 میکرومتر مورد ارزیابی قرار گرفت که نتایج شبیه سازی برای مدار نمونه نشان می دهد که مقدار توان مصرفی 24.3 پیکو وات و تاخیر 10.1 نانو ثانیه با الگوریتمPSO ، اتلاف توان 46.7 پیکو وات و مقدار تاخیر برابر با 2.7 نانو ثانیه با الگوریتم IPO و مقادیر 44.05 پیکو وات و 4.5 نانو ثانیه با الگوریتم GA حاصل می شود که در مقایسه با مدارهای ارائه شده در پژوهش های مشابه، علاوه بر بهبود چشمگیر توان و تاخیر، کمینه شدن w ها نیز حاصل شده است.کلید واژگان: الگوریتم های ابتکاری، تغییر دهنده سطح ولتاژ، بهینه سازی توان و تاخیر، بهبود مجتمع سازیThe powerfulness and effectiveness of the optimization methods are motivations of the researchers to use them in complex engineering problems. In this paper, the performance of the three optimization algorithms based on swarm intelligence ( IPO, PSO) and evolutionary technique (GA) for calculation the channel's widths of the transistors were evaluated compared with each others. The fitness functions are defined in order to the better integration and to improve the power consumption and delay of Level Shifter circuit (LS) with changing the voltage level of 0.4 to 3 volts using 0.35-um CMOS technology .Simulation results for the sample circuit show that it reach a power consumption of 0.222pW and a delay value of 9.113ns with PSO algorithm, a power consumption of 0.39 nW and delay value of 3.741 ns with IPO algorithm, and values of 0.235 nW and 3.711 ns whit GA algorithm. In addition to a dramatic improvement in power and delay, minimum of channel's widths also were obtained. All implementations of paper were performed in MATLAB and HSPICE.Keywords: Heuristic algorithms, Level shifter, Optimization of power, delay, Inclined planes system optimization, Particle swarm optimization, Genetic algorithm
-
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of inefficiency of PSO algorithm in high-dimensional search space, some algorithms such as Cooperative PSO offered. Accordingly, in the present article, we intend, in order to develop and improve PSO algorithm take advantage of some optimization methods such as Cooperatives PSO, Comprehensive Learning PSO and fuzzy logic, while enjoying the benefits of some functions and procedures such aslocal search function and Coloning procedure, propose the Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW) algorithm. By proposing this algorithm we try to improve mentioned deficiencies of PSO and get better performance in high dimensions.Keywords: Particle Swarm Optimization, Cooperative PSO, Comprehensive Learning, Inertia Weight, Fuzzy Controller
-
Journal of Advances in Computer Engineering and Technology, Volume:1 Issue: 1, Winter 2015, PP 43 -50In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO algorithm, when dealing with some simple benchmark functions. To improve further the performance of the conventional PSO, the SSPSO algorithm has been suggested to increase the diversity of particles in the swarm. The proposed speech enhancement method, called θ-SSPSO, is a hybrid technique, which incorporates both θ-PSO and SSPSO, with the goal of exploiting the advantages of both algorithms. It is shown that the new θ-SSPSO algorithm is quite effective in achieving global convergence for adaptive filters, which results in a better suppression of noise from input speech signal. Experimental results indicate that the new algorithm outperforms the standard PSO, θ-PSO, and SSPSO in a sense of convergence rate and SNRimprovement.Keywords: Adaptive filtering, Particle swarm optimization, Shuffled Sub-Swarm, Speech Enhancement, θ-PSO
-
هرگونه افزایش و تکثیر غیرطبیعی سلولی را تومور گویند. سرطان زمانی اتفاق می افتد که رشد کنترل نشده ای بر روی سلولهای غیرطبیعی در یکی از اعضای بدن به وجود آید. تومورها به دو دسته خوش خیم و بدخیم تقسیم می شوند. با توجه به رشد روزافزون داده های پیرامون بشر، به کارگیری ابزارهایی برای تحلیل این نوع داده ها و دست یابی به دانش نهفته آنها کاری الزامی است. به این دلیل که بشر دیدگاه ذاتی و بصری غیرقابل درکی درباره مسائل با ابعاد بالا و سایز بزرگ پایگاه داده ها دارد، از این رو استفاده از روش های هوشمندانه تاثیر به سزایی در شناخت و درک بهتر بر روی داده های با ابعاد بالا می گذارد. در این مقاله ابتدا با ادغام روش های رتبه بندی، زیرمجموعه ای از ویژگی های پایدار و متمایزکننده انتخاب می گردد و در گام بعدی به کمک یک سیستم فازی به شناسایی و دسته بندی داده های بیولوژیکی از لحاظ خوش خیم و بدخیم بودن آنها می پردازیم. سیستم فازی از نوع Takagi-sugeno-kang) TSK) است. برای دسته بندی نمونه ها از یک ساختار سلسله مراتبی مبتنی بر چندگونه سازی ذرات بر پایه الگوریتم ازدحام ذرات آشوبی برای بهینه سازی سیستم فازی استفاده می کنیم. نشان داده می شود که استفاده از نظریه آشوب در مسائل بهینه سازی با ایجاد تنوع در میان ذرات موجب افزایش صحت شناسایی و دسته بندی نمونه ها می گردد. میزان صحت شناسایی و دسته بندی از نظر بدخیم و خوش خیم بودن بر روی داده های بیولوژیکی بیش از 95 درصد بوده است. بررسی دقت روش پیشنهادی بر روی دو دادگان uci- breast cancer و microarray صورت گرفته است.
کلید واژگان: انتخاب ویژگی، الگوریتم بهینه سازی ازدحام ذرات، تومور، سرطان، سیستم فازی، نظریه آشوبAny abnormal reproduction of cells is a tumor. censer happens when there’s an unstrained growth of abnormal cells. Cancer and tumors are divided in to two types, malignant and benign. Given the growth in the environmental information, it’s essential to employ some tools to analyze this data and gain the knowledge embedded in it. Since large-scale problems and huge data bases are incomprehensible for the human, employing intelligent methods is effective in understanding large-scale data better. In this paper, the integration methods are a subset of rating measures each with a specific objective of sustainable features for superior selection of distinct features.The next step would discuss creating a fuzzy system (FS) to detect and classify between benign and malignant nature of biological data. Fuzzy system type is Takagi-Sugeno-Kang (TSK). To classify a hierarchical structure of multi-species particle swarm algorithm based on chaotic particle can be used to optimize the fuzzy system. In addition, using chaotic theory discerns the true diversity of the particles and increases the power to detect and classify the samples. Accurate identification and classification of malignant and benign biological nature of the data is more than 95%. This simulation is performed on UCI and Microarray data-base.Keywords: Fuzzy System, particle swarm optimization, chaotic theory, chaotic maps, Feature Selection -
In this paper a new strategy is proposed to design a fixed-structure robust controller for a flexible beam. Robust controller designed by the conventional loop shaping method is not appropriate for a beam because of its high order and complicated form. Fixed-structure loop shaping control in conjunction with particle swarm optimization (PSO)algorithm is used to overcome this drawback. The performance and robust stability conditions of the loop shaping controller are formulated as the cost function in the optimization problem. PSO is adopted to optimize the parameters and cost function. The proposed control design and loop shaping method are successfully applied on the flexible beam, and results of the two approaches are compared. Simulation results show the superiorities of the proposed controller in terms of having a lower order and simple structure; besides the beam stability and robust performance are retained as well. Also in comparison to the solutions based on genetic algorithms, the use of PSO shows better efficiency in terms of computational time.Keywords: Fixed, structure, Robust controller, Flexible beam, H, ∞loop shaping, Particle swarm optimization
-
در این مقاله، ما یک الگوریتم جدید پیشنهاد کرده ایم که PSO و ژنتیک را به طریقی با هم ترکیب میکند بگونه ای که الگوریتم جدید موثرتر و کار آمد تر میگردد. این بدین معنی که سرعت رسیدن به پاسخ به طور قابل ملاحظه ای افزایش می یابد و در عین حال دقت پاسخ نیز به مراتب بالاتر است. خاصیت الگوریتم بهینه سازی تجمع این است که به سرعت همگرا می شود، اما در نزدیکی های نقطه بهینه فرآیند جستجو به شدت کند می شود. از طرفی می دانیم که الگوریتم ژنتیک نیز به شرایط اولیه به شدت حساس می باشد. در حقیقت طبیعت تصادفی عملگرهای ژنتیک، الگوریتم را به جمعیت اولیه حساس می کند. این وابستگی به شرایط اولیه به گونه ای است که اگر جمعیت اولیه خوب انتخاب نگردد، الگوریتم ممکن است همگرا نشود. در این مقاله با استفاده از این الگوریتم ترکیبی GA- PSO، مکان و اندازه بهینه خازن در یک سیستم توزیع نمونه بدست آمده است. همچنین جایابی بهینه خازن با الگوریتم های PSO و GA بطور جداگانه بدست و نتایج با هم مقایسه شده اند. نتایج نشان می دهند که الگوریتم جدید می تواند سریعتر به پاسخ برسد و به جمعیت اولیه وابسته نیست و پاسخهای دقیق تری را پیدا میکند.
In this paper، we have proposed a new algorithm which combines PSO and GA in such a way that the new algorithm is more effective and efficient. The particle swarm optimization (PSO) algorithm has shown rapid convergence during the initial stages of a global search but around global optimum، the search process will become very slow. On the other hand، genetic algorithm is very sensitive to the initial population. In fact، the random nature of the GA operators makes the algorithm sensitive to the initial population. This dependence to the initial population is in such a manner that the algorithm may not converge if the initial population is not well selected. This new algorithm can perform faster and does not depend on initial population and can find optimal solutions with acceptable accuracy. Optimal capacitor placement and sizing have been found using this hybrid PSO-GA algorithm. We have also found the optimal place and size of capacitors using GA and PSO separately and compared the results.Keywords: Engineering Capacitor Placement, Hybrid PSO, GA, Particle swarm optimization, Genetic Algorithm -
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This article proposed a way to handle imbalance classes’ distribution. We introduce Multi-Objective Memetic Rule Learning from Decision Tree (MMDT). This approach partially solves the problem of class imbalance. Moreover, a MA is proposed for refining rule extracted by decision tree. In this algorithm, a Particle Swarm Optimization (PSO) is used in MA. In refinement step, the aim is to increase the accuracy and ability to interpret. MMDT has been compared with PART, C4.5 and DTGA on numbers of data sets from UCI based on accuracy and interpretation measures. Results show MMDT offers improvement in many cases.Keywords: C4.5, Memetic Algorithm, rule sets, Particle Swarm Optimization
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.