به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه "Neural Network" در نشریات گروه "فناوری اطلاعات"

تکرار جستجوی کلیدواژه «Neural Network» در نشریات گروه «فنی و مهندسی»
  • Zohreh Dorrani *, Hojat Annat Abadi

    In power systems, the transmission and distribution networks of electrical energy rely heavily on the performance of various equipment. Any malfunction within these systems can lead to network interruptions, short circuits, and power failures. Arresters are critical devices used to limit transient overvoltages caused by lightning strikes and switching events in transmission and distribution networks. These arresters protect equipment from transient overvoltages while ensuring that they do not react to temporary overloads. Their effectiveness is influenced by environmental conditions, such as humidity and pollution. This research aims to analyze the factors affecting voltage and energy absorption during lightning strikes on power systems. Additionally, we focus on designing an artificial neural network (ANN) to estimate the energy absorbed by the arrester, minimizing the error of this neural network. The results demonstrate that the ANN can effectively estimate the power of the arrester within the power system, providing a valuable tool for enhancing system reliability and performance. This study contributes to the understanding of arrester behavior under transient conditions and offers a novel approach to estimating their energy absorption capabilities using advanced computational techniques.

    Keywords: Arresters, Lightning, Neural Network, Power Systems
  • جواد جهانشیری، محمدرضا رضایی*، تکتم حق بیان، محمد فاتحی

    پیشرفت های اخیر در فناوری، بحث یادگیری عمیق را ایجاد کرده است. در این پیشرفت ها، مدل های یادگیری عمیق برای تولید تصاویر، گفتار و فیلم های واقع گرایانه استفاده می شود. این موضوع می تواند حریم خصوصی، دموکراسی و امنیت ملی را تهدید نماید. یکی از فناوری ها اخیر و بر مبنای یادگیری عمیق که اخیرا ظاهر شده تحت عنوان جعل عمیق است. الگوریتم های جعل عمیق می توانند تصاویر و فیلم های جعلی ایجاد کنند که انسان نمی تواند آن ها را از تصاویر معتبر تشخیص دهد. بنابراین پیشنهاد روش هایی به منظور ارزیابی و شناسایی محتواهای جعلی از واقعی ضروری است. در این مقاله ابتدا به بررسی الگوریتم های مورد استفاده برای ایجاد جعل های عمیق پرداخته شده است. سپس با بررسی پیشینه جعل های عمیق مروری جامع بر روش های تشخیص جعل عمیق صورت گرفته است. به عنوان نتیجه بهترین روش های تشخیص یادگیری عمیق برای جلوگیری از مشکلات حاصله بیان شده است.

    کلید واژگان: جعل عمیق, هوش مصنوعی, شبکه عصبی, یادگیری عمیق, چالش های آتی
    Javad Jahanshiri, Mohammadreza Rezaei *, Taktom Haghbayan, Mohammad Fatehi

    Recent advancements in technology have led to the emergence of deep learning. In these advancements, deep learning models are utilized for generating realistic images, speech, and videos. This development can pose threats to privacy, democracy, and national security. One of the recent technologies based on deep learning that has emerged is deepfakes. Deepfake algorithms can create synthetic images and videos that humans cannot distinguish from authentic ones. Therefore, proposing methods for evaluating and identifying fake content from real ones is essential. In this article, first, the algorithms used to create deepfakes are examined. Then, a comprehensive review of the background of deepfakes is conducted, followed by an overview of the methods for detecting deepfakes. As a result, the best deep learning detection methods to prevent the resulting problems are highlighted.

    Keywords: Deepfake, Artificial Intelligence, Neural Network, Deep Learning, Future Challenges
  • کیانا عظیمی*، احسان غیاثی نیک، علی احمدی ارکمی

    این مطالعه به بررسی نقش تحولی یادگیری عمیق و شبکه های عصبی در حوزه کنترل آلودگی هوا می پردازد. با تمرکز بر تشخیص و نظارت پیشرفته، به ویژه از طریق معماری های شبکه عصبی کانولوشنی و بازگشتی، این تحقیق پتانسیل این فناوری ها را برای کشف الگوهای پیچیده در دینامیک کیفیت هوا نشان می دهد. فراتر از صرفا تشخیص، این مدل ها توانایی های پیش دستی را نشان می دهند که پیش بینی و پیش بینی وقایع آلودگی را ممکن می سازد. این پیش بینی ها، پیاده سازی استراتژی های کنترلی تطبیقی را ممکن می سازد که به طور موثری خطرات بهداشتی را کاهش داده و تخصیص منابع را بهینه می کنند. با این حال، مطالعه به چالش های مربوط به کیفیت داده ها و قابلیت تفسیر اشاره دارد و بر لزوم همکاری بین رشته ای میان کارشناسان یادگیری ماشین، دانشمندان محیط زیست و سیاست گذاران تاکید می کند. با ترکیب این یافته ها، تحقیق به پیشرفت استراتژی های پایدار برای کاهش تاثیر آلودگی هوا بر سلامت انسان و محیط زیست کمک می کند و همچنین روش های کنترل آن را از طریق رویکردهای یادگیری عمیق بررسی می نماید.

    کلید واژگان: یادگیری عمیق, شبکه عصبی, آلودگی هوا, تشخیص آلودگی
    Kiana Azimi *, Ehsan Ghiasy Nick, Ali Ahmadi Orkomi

    This study delves into the transformative role of deep learning and neural networks in the domain of air pollution control. By focusing on enhanced detection and monitoring, particularly through convolutional and recurrent neural architectures, the research highlights the potential of these technologies to unravel complex patterns within air quality dynamics. Beyond mere detection, these models demonstrate proactive capabilities, enabling the prediction and forecasting of pollution events. This foresight empowers the implementation of adaptive control strategies, effectively minimizing health risks and optimizing resource allocation. However, the study acknowledges challenges related to data quality and interpretability, emphasizing the necessity for interdisciplinary collaboration among machine learning experts, environmental scientists, and policymakers. In synthesizing these findings, the research contributes to the advancement of sustainable strategies for mitigating the impact of air pollution on human health and the environment and also reviews methods of controlling it by deep learning approaches.

    Keywords: Deep Learning, Neural Network, Air Pollution, Pollution Detection
  • Mohsen Kaveh, Mohammadhadi Zahedi *, Elham Farahani

    The energy sector encompasses essential processes such as the production, distribution, and consumption of energy. Traditionally, these processes have been managed through conventional networks, which often lead to issues such as process fluctuations, increased costs, and inefficiencies. However, the advent of Internet of Energy technology facilitates a transition from traditional to smart networks. In the Internet of Energy, the use of sensors results in the generation of large volumes of data. By employing machine learning to analyze this data, it becomes possible to make accurate predictions in the energy sector, which in turn supports effective decision-making for energy production and distribution. The objective of this study is to analyze data within the Internet of Energy using machine learning techniques, ultimately leading to the development of an artificial intelligence model capable of predicting energy consumption. Initially, previous models will be reviewed, and their outcomes will be compared and analyzed based on scores and evaluation metrics. Finally, a deep neural network model will be introduced, demonstrating an error rate of 0.3. The mean absolute error is reported as 0.4, and the mean square error is 0.3. Despite these advantages, there are also limitations to consider. The data involved in the analysis and prediction process must meet appropriate standards. The significant variability present in industrial processes adds complexity to the environment.

    Keywords: Internet Of Things, Machine Learning, Smart Grid, Data Analysis, Neural Network
  • وحید محمدی*، محمدمهدی شیرمحمدی

    با پیشرفت روزافزون فناوری و گسترش استفاده از اینترنت، بات نت ها به عنوان یکی از تهدیدات امنیتی مهم در فضای دیجیتال به شمار می روند. بات نت ها، شبکه هایی از دستگاه های آلوده اند که توسط مهاجمان کنترل می شوند و برای اهداف مختلفی مانند ارسال اسپم، حملات DDoS و سرقت اطلاعات حساس استفاده می شوند. با توجه به روند رو به افزایش استفاده از بات نت ها، تشخیص و جلوگیری از فعالیت آن ها از اهمیت بسیاری برخوردار است. گستردگی ارتباطات، به اشتراک گذاری منابع، حس کنجکاوی، کسب پول، جمع آوری اطلاعات و به دست آوردن ظرفیت منابع، انگیزه هایی برای ایجاد بات نت است. علاوه بر اینها باید انگیزه های سیاسی، اقتصادی و نظامی را نیز اضافه نمود.روش ما قابلیت تشخیص بات نت های شناخته شده و همچنین ناشناخته ای که از این روش استفاد می کنند را دارا هست.هدف ما در این مقاله، ارائه روشی نوآورانه برای تشخیص بات نت ها با استفاده از تحلیل پاسخ های ناموفق و شبکه عصبی است. در این روش تشخیص بات نت ها براساس پاسخ های ناموفق یا NXDomain در هر میزبان صورت می گیرد. این ویژگی باعث می شود که دقت تشخیص در شبکه های کوچک و متوسط افزایش یابد. این روش در شبکه های آلوده به بات نت های کانفیکر و کراکن آزمایش و اطلاعات به دست آمده از آن با استفاده از شبکه های عصبی مورد تجزیه وتحلیل قرارگرفته است. نتایج ارزیابی نشان دهنده کارایی خوب این روش در تشخیص بات نت است.

    کلید واژگان: بات نت, سرور فرماندهی و کنترل, ترافیک سرویس نام دامنه, پاسخهای ناموفق, شبکه عصبی
    Vahid Mohammadi *, Mohammadmahdi Shirmohammadi

    With the increasing development of technology and the expansion of the use of the Internet, botnets are considered as one of the most important security threats in the digital space. Botnets are networks of infected devices controlled by attackers and used for various purposes such as sending spam, DDoS attacks, and stealing sensitive information. Considering the increasing trend of using botnets, it is very important to detect and prevent their activity. The spread of communication, resource sharing, curiosity, earning money, gathering information and gaining resource capacity are motivations for creating botnets. In addition to these, political, economic and military motives should also be added. Our method has the ability to detect known and unknown botnets that use this method. Our goal in this paper is to present an innovative method to detect botnets using failed response analysis and neural network. In this method, botnets are detected based on failed responses or NXDomain in each host. This feature increases the accuracy of detection in small and medium networks. This method has been tested in networks infected with Konfiker and Kraken botnets and the information obtained from it has been analyzed using neural networks. The evaluation results show the good performance of this method in botnet detection.

    Keywords: Botnet, Command, Control Server, DNS Traffic, Nxdomain, Neural Network
  • نازیلا محمدی، غلامرضا معمارزاده طهران*، صدیقه طوطیان اصفهانی

    مدیریت صحیح اجرای سیاست های حوزه فناوری اطلاعات و ارتباطات در مسیری برنامه ریزی شده به منظور رسیدن به ارتقای جایگاه کشور در زمینه های علمی و فناوری، اجتناب ناپذیر است. هدف این پژوهش، ارائه مدل عوامل موثر بر اجرای سیاست های حوزه فناوری اطلاعات و ارتباطات ایران به کمک تکنیک شبکه عصبی و بر اساس تئوری ساخت یابی گیدنز می باشد. این تحقیق از منظر انجام آن از نوع پیمایشی و بر مبنای هدف، از نوع کاربردی است زیرا سعی بر آن است که از نتایج پژوهش در مجموعه وزارت ارتباطات و فناوری اطلاعات و شرکت مخابرات ایران بهره برداری گردد. گردآوری داده ها، بر اساس روش کتابخانه ای و میدانی صورت گرفته است. ابزار گردآوری اطلاعات، ادبیات پژوهش و پرسشنامه محقق ساخته می باشد. جامعه آماری تحقیق کارشناسان فناوری اطلاعات و ارتباطات ستاد شرکت مخابرات ایران (810 نفر) می باشند که 260 نفر براساس فرمول کوکران به صورت تصادفی به عنوان نمونه انتخاب شدند. برای تحلیل داده ها از نرم افزار متلب استفاده شد. طبق یافته ها بهترین ترکیب برای توسعه زمانی است که تمام متغیرهای ورودی همزمان در نظر گرفته شوند و بدترین حالت زمانی است که متغیر توسعه زیرساخت نادیده گرفته شود و همچنین بیشترین اهمیت بر اساس تحلیل حساسیت شبکه، مربوط به توسعه زیرساخت و کمترین مربوط به تامین محتوا می باشد.

    کلید واژگان: فناوری اطلاعات و ارتباطات, برنامه ششم توسعه, گیدنز, شبکه عصبی, اجرای سیاست ها
    Nazila Mohammadi, Gholamreza Memarzadeh Tehran *, Sedigheh Tootian Isfahani

    It is inevitable to properly manage the implementation of information and communication technology policies in a planned way in order to improve the country's position in the fields of science and technology. The purpose of this research is to provide a model of the effective factors on the implementation of Iran's ICT policies with the help of the neural network technique and based on Giddens' constructive theory. From the point of view of conducting it, this research is of a survey type and based on the purpose, it is of an applied type because it is trying to use the results of the research in the Ministry of Communication and Information Technology and the Iranian Telecommunications Company. Data collection is based on library and field method. The tool for collecting information is research researcher-made questionnaire. The statistical population of the research is information and communication technology experts at the headquarters of Iran Telecommunication Company (810 people), of which 260 people were randomly selected as a sample based on Cochran's formula. MATLAB software was used for data analysis. According to the findings, the best combination for development is when all input variables are considered at the same time, and the worst case is when the infrastructure development variable is ignored, and the most important based on network sensitivity analysis is related to infrastructure development and the least important is related to content supply.

    Keywords: Information, Communication Technology, 6Th Development Plan, Giddens, Neural Network, Policy Implementation
  • بابک نیکمرد، آذین پیشداد، گلناز آقایی قزوینی، مهرداد عباسی

    هر روز، سازمان ها حجم قابل توجهی از فایل های رخداد (لاگ) تولید می کنند که برای بررسی شرایط، اشکال زدایی و رفع ناهنجاری ها نیاز به پردازش دارند. برون سپاری چنین فرایندی به دلیل نیاز به پردازش بلادرنگ و نگهداری امنیتی مناسب نیست. با توجه به انبوه نرم افزارها و سرویس های مختلف، سازمان ها با حجم قابل توجهی از گزارش ها و رخدادهای تولیدی مواجه هستند که به جای حذف یا نادیده گرفته شدن، باید پردازش شوند. در روش سنتی، کارشناسان روزانه به صورت دستی پرونده های رخداد را بررسی می کنند که این امر از یک سو باعث کندی فرآیند، افزایش زمان و عدم دقت و از سوی دیگر به دلیل نیاز به نیروی متخصص، هزینه های بالای استخدام را در پی دارد. این مقاله راه حلی را معرفی می کند که از شبکه های عصبی مولد برای ایجاد یک ساختار محلی برای تجزیه و تحلیل گزارش در سازمان استفاده می شود. این فرآیند شامل بازیابی و تجزیه فایل های متنی از بخش های مختلف، تقسیم آن ها به بخش های قابل مدیریت، جاسازی و ذخیره آن ها در یک پایگاه داده برداری است. در این ساختار، یک فرد آموزش دیده بدون تخصص خاص می تواند به سرعت به اطلاعات لازم با استفاده از اعلان های مناسب (پرامپت نویسی) از یک مدل زبان بزرگ که به صورت محلی در سازمان توسعه یافته و در هر زمان قابل دسترسی است، استفاده کند. ازهمین روی، روش پیشنهادی می تواند باعث پایداری امنیت، افزایش سرعت تجزیه و تحلیل و کاهش هزینه های منابع انسانی شود.

    کلید واژگان: شبکه عصبی, هوش مصنوعی مولد, مدل زبان بزرگ, فایل لاگ
    Babak Nikmard, Azin Pishdad, Golnaz Aghaee Ghazvini, Mehrdad Abbasi

    Nowdays, organizations generate a significant volume of log files that require processing for condition checking, debugging, and anomaly resolution. Outsourcing such processing is not suitable due to the need for real-time processing and security maintenance. Given the multitude of different software and services, organizations face a substantial volume of production logs that should be processed rather than deleted or ignored. In the traditional approach, experts manually check the logs daily. This, on one hand, slows down the process, increases the time and inaccuracy, and, on the other hand, results in a high hiring cost due to the need for an expert force. This article introduces a solution that employs generative neural networks to establish a local structure for log analysis within the organization. The process involves retrieving and parsing text files from various sectors, segmenting them into manageable portions, embedding them, and storing them in a vector database. In this structure, a trained individual without special expertise can quickly access necessary information using appropriate prompts from a local language model available at any time. As a result, three overarching goals are achieved: maintaining security, increasing the speed of analysis, and reducing human resource costs.

    Keywords: Neural Network, Generative Artificial Intelligence, Large Language Model, LLM, Log File
  • Mehdy Roayaei *

    Contemporary machine learning models, like deep neural networks, require substantial labeled datasets for proper training. However, in areas such as natural language processing, a shortage of labeled data can lead to overfitting. To address this challenge, data augmentation, which involves transforming data points to maintain class labels and provide additional valuable information, has become an effective strategy. In this paper, a deep reinforcement learning-based text augmentation method for sentiment analysis was introduced, combining reinforcement learning with deep learning. The technique uses Deep Q-Network (DQN) as the reinforcement learning method to search for an efficient augmentation strategy, employing four text augmentation transformations: random deletion, synonym replacement, random swapping, and random insertion. Additionally, various deep learning networks, including CNN, Bi-LSTM, Transformer, BERT, and XLNet, were evaluated for the training phase. Experimental findings show that the proposed technique can achieve an accuracy of 65.1% with only 20% of the dataset and 69.3% with 40% of the dataset. Furthermore, with just 10% of the dataset, the method yields an F1-score of 62.1%, rising to 69.1% with 40% of the dataset, outperforming previous approaches. Evaluation on the SemEval dataset demonstrates that reinforcement learning can efficiently augment text datasets for improved sentiment analysis results.

    Keywords: Data Augmentation, Sentiment analysis, Deep reinforcement learning, Neural Network, DQN Algorithm
  • فریناز صناعی، سید عبدالله امین موسوی، عباس طلوعی اشلقی، علی رجب زاده قطری
    مقدمه

    ملانوم جزء شایعترین سرطان تشخیصی و دومین علت مرگ ناشی از سرطان در میان افراد است. تعداد مبتلایان به آن در حال افزایش است. ملانوم، نادرترین و بدخیم ترین نوع سرطان پوست است.در شرایط پیشرفته توانایی انتشار به ارگانهای داخلی را دارد و میتواند منجر به مرگ شود. طبق برآوردهای انجمن سرطان آمریکا برای ملانوم در ایالاتمتحده برای سال 2022 عبارتاند از: حدود 99،780 ز افراد مبتلابه ملانوم تشخیص داده شدند و حدود 7،650 نفر در اثر ملانوم جان خود را از دست میدهند. لذا هدف از این مطالعه، طراحی بهبود دقت الگوریتم برای پیش بینی بقای این بیماران است.

    روش پژوهش

     روش حاضر کاربردی، توصیفی- تحلیلی و گذشتهنگر است. جامعه پژوهش را بیماران مبتلابه سرطان ملانوم پایگاه داده مرکز تحقیقات کشوری سرطان دانشگاه شهید بهشتی) 1387 تا 1391 (که تا 5 سال مورد پیگیری قرارگرفته بودند، تشکیل داده است. مدل پیشبینی بقای ملانوم بر اساس شاخص های ارزیابی الگوریتم های داده کاوی انتخاب شد.

    یافته ها

    الگوریتم های شبکه عصبی، بیز ساده، شبکه بیزی، ترکیب درخت تصمیم گیری با بیز ساده، رگرسیون لجستیک، J48 ، ID3 بهعنوان مدل های استفاده شده ی پایگاه داده کشور انتخاب شدند . عملکرد شبکه عصبی در همه شاخصهای ارزیابی ازلحاظ آماری نسبت به سایر الگوریتم های منتخب بالاتر بود.

    نتیجه گیری

    نتایج مطالعه حاضر نشان داد که شبکه عصبی با مقدار 97 / 0 ازلحاظ دقت پیش بینی عملکرد بهینه دارد. بنابراین مدل پیش بینی کننده بقای ملانوم، هم ازلحاظ قدرت تمایز و هم ازلحاظ پایایی، عملکرد بهتری از خود نشان داد؛ بنابراین، این الگوریتم به عنوان مدل پیش بینی بقای ملانوم پیشنهاد شد

    کلید واژگان: داده کاوی, پیش بینی, ملانوم, بقای بیماری, شبکه عصبی, درخت تصمیم گیری
    farinaz sanaei, Seyed Abdollah Amin Mousavi, Abbas Toloie Eshlaghy, ali rajabzadeh ghotri
    Background/ Purpose

    Among the most commonly diagnosed cancers, melanoma is the second leading cause of cancer-related death. A growing number of people are becoming victims of melanoma. Melanoma is also the most malignant and rare form of skin cancer. Advanced cases of the disease may cause death due to the spread of the disease to internal organs. The National Cancer Institute reported that approximately 99,780 people were diagnosed with melanoma in 2022, and approximately 7,650 died. Therefore, this study aims to develop an optimization algorithm for predicting melanoma patients' survival.

    Methodology

    This applied research was a descriptive-analytical and retrospective study. The study population included patients with melanoma cancer identified from the National Cancer Research Center at Shahid Beheshti University between 2008 and 2013, with a follow-up period of five years. An optimization model was selected for melanoma survival prognosis based on the evaluation metrics of data mining algorithms.

    Findings

    A neural network algorithm, a Naïve Bayes network, a Bayesian network, a combination of decision tree and Naïve Bayes network, logistic regression, J48, and ID3 were selected as the models used in the national database. Statistically, the studied neural network outperformed other selected algorithms in all evaluation metrics.

    Conclusion

    The results of the present study showed that the neural network with a value of 0.97 has optimal performance in terms of reliability. Therefore, the predictive model of melanoma survival showed a better performance both in terms of discrimination power and reliability. Therefore, this algorithm was proposed as a melanoma survival prediction model.

    Keywords: data mining, prediction, melanoma, disease survival, neural network, decision tree
  • بررسی جامع رویکردهای یادگیری عمیق در تحلیل تفاضلی رمزهای قالبی سبک وزن
    ایمان میرزاعلی مازندرانی، نصور باقری*، صادق صادقی

    با گسترش روزافزون استفاده از یادگیری عمیق و شبکه های عصبی در علوم مختلف و موفقیت های حاصل از آن، در سال 2019 شبکه های عصبی عمیق برای تحلیل رمز تفاضلی اتخاذ شدند و پس از آن توجه فزایند های به این زمینه از تحقیقات جلب شد. اکثر تحقیقات انجام شده بر روی بهبود و بهکارگیری تمایزگرهای عصبی متمرکز هستند و مطالعات محدودی نیز در رابطه با اصول ذاتی و ویژگیهای یادگرفته شده توسط تمایزگرهای عصبی صورت گرفته است. در این مطالعه با تمرکز بر روی سه رمز قالبی Speck ، Simon و Simeck ، به بررسی فرایند و روش تحلیل رمزهای قالبی با کمک یادگیری عمیق خواهیم پرداخت. در این میان، عوامل موثر و مولفه های موجود در جهت دسترسی به عملکرد بهتر، واکاوی و مقایسه خواهند شد. همچنین با تشریح حملات و مقایسه نتایج، به این سوال پاسخ خواهیم داد که آیا از شبکه های عصبی و یادگیری عمیق م یتوان به عنوان یک ابزار کارا برای تحلیل رمزهای قالبی استفاده نمود یا خیر.

    کلید واژگان: رمز قالبی, تحلیل رمز, تمایزگر عصبی, حمله بازیابی کلید, یادگیری عمیق, شبکه عصبی
    A Comprehensive Exploration of Deep Learning Approaches in Differential Cryptanalysis of Lightweight Block Ciphers
    Iman Mirzaali Mazandarani, Nasour Bagheri*, Sadegh Sadeghi

    With the increasing and widespread application of deep learning and neural networks across various scientific domains and the notable successes achieved, deep neural networks were employed for differential cryptanalysis in 2019. This marked the initiation of growing interest in this research domain. While most existing works primarily focus on enhancing and deploying neural distinguishers, limited studies have delved into the intrinsic principles and learned characteristics of these neural distinguishers. In this study, our focus will be on analyzing block ciphers such as Speck, Simon, and Simeck using deep learning. We will explore and compare the factors and components that contribute to better performance. Additionally, by detailing attacks and comparing results, we aim to address the question of whether neural networks and deep learning can effectively serve as tools for block cipher cryptanalysis or not.

    Keywords: Block Cipher, Cryptanalysis, Neural Distinguisher, Key Recovery, Deep Learning, Neural Network
  • Natalja Osintsev *
    Air pollution is the biggest environmental hazard that cannot be ignored. Due to increase in number of industries and urbanization increases air pollutants concentrations in many areas because of this different changes are been happening in human life like health issues and as well as other living organisms. We have some pollutant emission monitoring systems, like Opsis, Codel, Urac and TAS-Air metrics which are expensive. As well as these systems have limitations to be installed on chimney due to their principle of operation. In this work I like to propose a function that is easy to use and causes less cost compared to the other ones. That is an industrial air pollution monitoring system based on the technology of Wireless Sensor Networks (WSNs). This system is integrated with the Global System for Mobile (GSM) communications and the protocol it uses is zigbee. The system consists of sensor nodes, a control center and data base through which sensing data can be stored for history and future plans. It is used to monitor Carbon Monoxide (CO), Sulfur Dioxide (SO2) and dust concentration caused by industrial emissions due to process.
    Keywords: object detection model, Neural Network, Deep Learning, Python
  • Milad Ghasemi *, Maryam Bayati
    The continuous progress of photography technologies as well as the increase in the number of images and their applications requires the emergence of new algorithms with new and different capabilities. Among the various processes on medical images, the segmentation of medical images has a special place and has always been considered and investigated as one of the important issues in the processing of medical images. Based on this, in this research, a solution to diagnose the tumor through the use of a combined method based on watershed algorithm, co-occurrence matrix and neural networks has been presented, so that through the use of this combined solution, the tumor can be detected with high accuracy. Medical images diagnosed. According to the method used in this research, as well as the implementation of the solution in the Python environment and through the use of CV2 and SimpleITK modules, it is possible to set parameters such as accuracy, correctness, recall and Fscore criteria. which are always important parameters that are investigated in researches, improved compared to the past and achieved favorable results. This will increase the improvement of tumor detection in the brain compared to Thersholding and TKMeans methods.
    Keywords: Tumor Diagnosis, image processing, medical images, Neural network
  • Aziza Algarni *
    We all know forest is very important resource of oxygen. Saving our environmental resources is human beings responsibility. One of the techniques to save forests is forest fire detection. This is a technique used to detect the fire and prevent them in less time. Forest fire leads to death of wild life and trees. There are other techniques used to detect fire in forests like cameras, satellite system, manual monitoring but they take time to detect the fire whereas Forest fire detection system detects the fire within seconds and triggers the alarms. In this way we can save tress and wildlife in very less time.
    Keywords: object detection model, Neural Network, Deep Learning, Python
  • Ibrahim Mekawy *
    Household object detection is a brand-new computer technique that combines image processing and computer vision to recognize objects in the home. All objects stored in the kitchen, room, and other areas will be detected by the camera. Low-end device techniques for detecting people in video or images are known as object detection. With picture and video analysis, we've lost our way.
    Keywords: object detection model, Neural Network, Deep Learning, Python
  • Mohammad Nazarpour, navid nezafati, Sajjad Shokouhyar

    Integration and diversity of IOT terminals and their applicable programs make them more vulnerable to many intrusive attacks. Thus, designing an intrusion detection model that ensures the security, integrity, and reliability of IOT is vital. Traditional intrusion detection technology has the disadvantages of low detection rates and weak scalability that cannot adapt to the complicated and changing environment of the Internet of Things. Hence, one of the most widely used traditional methods is the use of neural networks and also the use of evolutionary optimization algorithms to train neural networks can be an efficient and interesting method. Therefore, in this paper, we use the PSO algorithm to train the neural network and detect attacks and abnormalities of the IOT system. Although the PSO algorithm has many benefits, in some cases it may reduce population diversity, resulting in early convergence. Therefore,in order to solve this problem, we use the modified PSO algorithm with a new mutation operator, fuzzy systems and comparative equations. The proposed method was tested with CUP-KDD data set. The simulation results of the proposed model of this article show better performance and 99% detection accuracy in detecting different malicious attacks, such as DOS, R2L, U2R, and PROB.

    Keywords: Attack detection, Internet of Things (IOT), Neural Network, PSO Algorithm, Fuzzy rule, Adaptive Formulation
  • Agyan Panda *, Sheila Maria Muniz
    Household object detection is a brand-new computer technique that combines image processing and computer vision to recognise objects in the home. All objects stored in the kitchen, room, and other areas will be detected by the camera. Low-end device techniques for detecting people in video or images are known as object detection. With picture and video analysis, we've lost our way.
    Keywords: object detection model, Neural Network, Deep Learning, Python
  • Alaa Mahdi Alkhafaji, Ghassan Fadhil Smaisim*, Falah mahdi Alobayes, Monireh Houshmand

    With the accelerated development of Internet finance, electronic funds transfer, and the rapid growth of credit card activity, credit cards play a very important role in every area of ​​life today. There are some risks in this regard that are considered serious threats to both issuers and cardholders. The increasing number of fraudulent credit card transactions forged credit cards and fraudulent use of expired credit cards have led to increased losses. Therefore, finding fraud detection techniques accurately and quickly has become an important topic in current investigations. In this study, after normalizing and reducing the dimensionality of the data using the PCA algorithm, we used the modified perceptron neural network and the grasshopper algorithm to classify the data. In this study, we use the grasshopper algorithm to adjust the weights and biases of neural networks. In the end, we were able to achieve 99.20% accuracy.

    Keywords: Fraud Detection, Grasshopper Optimization Algorithm, Neural Network
  • Zahra Abbasnejad*, Milad Ghahari Bidgoli

    The growing number of information on the web and the addition of different web pages and websites to this space has made users face problems. These problems appear to users when users are trying to obtain information on a particular topic, and finding all the pages that are suggested to them is a difficult and time consuming process. In the current research, a profile is first created based on the behavioral characteristics of users at different sessions that result from web server logs. These include things like the frequency of user page views, the length of time the user has been on different pages, and the date the page was viewed. We then group them using the clustering method, then fuzzy inference system, extract the fuzzy rules according to the interests of the users and their clusters, and after obtaining the users’ movement patterns, they Insertneural network into vector format Other tools such as bio-algorithms can be useful by obtaining optimal parameters in optimizing predictions and increasing accuracy in fuzzy neural network. The evaluation criteria in this study is accuracy.

    Keywords: data mining, web mining, user behavior patterns, neural network, fuzzy system, MFO algorithm
  • Mehrdad Fadaei Pellehshahi, Sohrab Kordrostami, AmirHosein Refahi Sheikhani*, Marzieh Faridi Masouleh, Soheil Shokri

    In this study, an alternative method is proposed based on recursive deep learning with limited steps and prepossessing, in which the data is divided into A unit classes in order to change a long short term memory and solve the existing challenges. The goal is to obtain predictive results that are closer to real world in COVID-19 patients. To achieve this goal, four existing challenges including the heterogeneous data, the imbalanced data distribution in predicted classes, the low allocation rate of data to a class and the existence of many features in a process have been resolved. The proposed method is simulated using the real data of COVID-19 patients hospitalized in treatment centers of Tehran treatment management affiliated to the Social Security Organization of Iran in 2020, which has led to recovery or death. The obtained results are compared against three valid advanced methods, and are showed that the amount of memory resources usage and CPU usage time are slightly increased compared to similar methods  and the accuracy is increased by an average of 12%.

    Keywords: Long Short Term Memory, Recurrent Deep Learning, Prediction, COVID-19, Neural Network
  • Pejman Peykani, Farzad Eshghi *, Alireza Jandaghian, Hamed Farrokhi-Asl, Farid Tondnevis
    Providing efficient and powerful approach for liquidity management of bank branches has always been one of the most important and challenging issues for researchers and scholars in the banking field. In other words, estimating the amount of required cash in different branches of the bank is one of the basic and important questions for managers of the banking system. Because on the one hand, if the amount of cash is less than the required amount, the bank runs the default risk, and on the other hand, if the amount of cash is more than the required amount, the bank incurs opportunity costs. Therefore, the purpose of this study is to provide a practical approach to predict the optimal amount of required cash in bank branches. For this purpose, the concepts of time series, neural network approach and vector autoregressive model are used. The effectiveness of the proposed approach is also examined using real data.
    Keywords: Banking System, Cash Prediction, Liquidity Requirement, Neural Network, time series
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال