ضریب شکل
در نشریات گروه مکانیک-
در کار حاضر رسوب میکروذرات برای جریان در کانال با مانع بیضوی با مساحت ثابت اما با ضریب شکل های متفاوت بررسی شده است. شبیه سازی عددی به روش شبکه بولتزمن به همراه روش لاگرانژی برای مسیریابی ذرات انجام شده است. مدل شبکه ی استفاده شده در کار حاضر مدل دو بعدی و 9 سرعته،9Q2D، است. از شرط مرزی منحنی شکل برای مرز موانع استفاده شده است. ذرات با شرایط استاندارد در ورودی کانال تزریق شده اند. گرانش، نیروی دراگ، نیروی براونی و نیروی لیفت سافمن در معادله حرکت ذرات در نظر گرفته شده است. پارامتر هندسی نسبت اقطار مانع که به عنوان ضریب شکل در نظر گرفته می شود با پارامترهای جریان مانند عدد رینولدز برای رسوب و پراکندگی ذرات در نظر گرفته شده اند. نتایج مورد نظر برای هر دو متغیر ضریب شکل و عدد رینولدز با 8 ضریب شکل و 5 عدد رینولدز مختلف بررسی شده اند. نتایج نشان از تاثیر ضریب شکل بر روی جریان سیال با ممانعت از عبور جریان و تغییر در نوع جریان دارد. این تغییر در اعداد رینولدز مختلف نیز قابل مشاهده است. همچنین تغییر ضریب شکل با تغییر در نوع جریان و مکانیزم های رسوب باعث تغییر در نیروهای وارده بر ذرات و رسوب ذرات می شود. به طور کلی تاثیر متغیرهای مورد نظر با تعداد ذرات رسوب شده تفسیر شده است.کلید واژگان: روش شبکه بولتزمن، مسیریابی ذرات، مکانیزم رسوب، ضریب شکلIn the current study, transportation of the microparticles deposition through a channel has been investigated where elliptical obstacle with constant cross sectional area but different shape factors was assumed in the channel. Numerical simulation was conducted using lattice Boltzmann method, and Lagrange method was used for particle tracking. A two-dimensional and nine-velocity model was used as the network model. A curved boundary condition was applied for the obstacle boundaries. In the designed model, particles at standard condition were injected at the inlet of the channel. Gravity force, drag force, Brownian force and Soffman lift force were applied in the motion equation of the particles. The effect of shape factor as a geometrical parameter, which was defined as the ratio of the diameters of elliptical obstacle, and the flow parameters such as Reynolds’ number was examined on the particle deposition and particle scattering. Results were examined at eight different shape factors and five different Reynolds numbers .Results revealed that the change in the shape factor varies the effect of the obstacle in the flowing stream, and also changes the flow regime. This variation was obtained at different Reynolds numbers. Furthermore, changes of the shape factor associated with variations in the flow regime and deposition mechanisms, changes the forces exerted on the particles. Generally, the effect of the mentioned parameters can be interpreted based on the number of the precipitated particles.Keywords: Lattice Boltzmann Method, Particle Tracking, Deposition Mechanism, Shape Factor
-
اگر ترک مرکزی در یک صفحه بی نهایت بزرگ تحت بارگذاری یکنواخت (ترک گریفیث)، به یکی از لبه های اعمال بار نزدیک شود، تبدیل به ترک زیرسطحی می شود. ترک های زیرسطحی، در سازه هایی که در معرض پدیده خستگی تماس غلتشی قرار دارند، ایجاد می شوند. در این مطالعه، ابتدا با استفاده از مدل سازی اجزامحدود، ضرایب شدت تنش ترک گریفیث تحت کشش و برش یکنواخت محاسبه و با خطای کمتر از 0.1% صحه گذاری گردیده است. سپس، با نزدیک نمودن ترک به یکی از لبه های موازی صفحه، ضرایب شدت تنش مود ترکیبی ترک زیرسطحی به ازای عمق های مختلف تعیین شده است. عدم تقارن هندسی نسبت به سطح ترک و کوپلینگ مودهای شکست، موجب بروز مودهای برشی و کششی قابل ملاحظه برای ترک زیرسطحی به ترتیب تحت بارهای کششی و برشی می گردد. با کاهش عمق ترک، کوپلینگ مودهای شکست افزایش می یابد تا جایی که در نسبت طول به عمق 20 برای ترک، ضرایب شدت تنش ناشی از این پدیده، 69% ضرایب شدت تنش مودهای اصلی می شوند. همچنین، با برازش دقت بالای تابع درجه سه بر ضرایب شدت تنش مود ترکیبی محاسبه شده، چهار ضریب شکل برای مودهای کششی و برشی ناشی از کشش و برش یکنواخت ترک زیرسطحی ارائه شده است. روابط صریح ارائه شده برای ضریب شدت تنش، برای استفاده سریع و راحت توسط مهندسان بسیار مفید خواهد بود. مقادیر به دست آمده از این روابط، حتی برای بارگذاری های غیریکنواخت نیز می تواند تقریب خوبی از ضرایب شدت تنش باشد (به خصوص برای طول ترک های کوتاه که تغییرات بار روی آن ها نمی تواند چندان زیاد باشد).کلید واژگان: ضریب شدت تنش، ترک گریفیث، ترک زیرسطحی، کوپلینگ مودهای شکست، ضریب شکلThe Griffith crack, a central crack in an infinite plane under uniform loading, is converted to a subsurface one by moving close to a loaded edge of the plane. Subsurface cracks initiate under rolling contact fatigue conditions. In this paper, first, finite element model of the Griffith crack has been developed and validated by calculating stress intensity factors (SIFs) under uniform tension and shear loadings. Then, by moving the crack close to a parallel edge of the plane, mixed mode SIFs of the subsurface crack have been determined for a wide range of the cracks depths. Non-symmetrical geometry with respect to the crack edge causes coupling between fracture modes and so, considerable shear and tension fracture modes under tension and shear loadings, respectively. The ratio of SIF for the coupling mode to the direct mode is creased up to 69% for the length to depth ratio of 20. Also, by fitting third-degree polynomials to the mixed mode SIFs, four geometry correction factors have been obtained for SIFs of subsurface cracks under uniform loadings. These approximate equations can be used easily and efficiently by engineers. Also, the relations can be utilized as a primary estimation for non-uniform loadings, especially when the crack length as well as the load variation along it is small.
-
در این مقاله، طراحی بهینه یک مخزن تحت فشار مرکب را در چند سطح بررسی شده است. متغیرهای طراحی مخزن کامپوزیتی شامل شکل کلگی، زاویه پیچش، ضخامت لایه ها، تعداد لایه ها و ترتیب چیدمان می شود. پارامتری با نام «ضریب شکل اصلاح شده» به عنوان تابع هدف معرفی شده است. این پارامتر اثرات فشار و حجم داخلی، وزن مخزن، و خصوصیات ماده کامپوزیت را در نظر می گیرد. الگوریتم پیشنهادی، الگوریتم ژنتیک و تحلیل اجزاء محدود را جهت بهینه سازی پارامترهای طراحی به کار می برد. به عنوان چند مثال، این روند بر اشکال کلگی ئودزیک و بیضوی اعمال شده است. نتایج نشان می دهد که برای شرایط مخزن داده شده، شکل کلگی ئودزیک با زاویه پیچش مارپیچ 9 درجه، عملکرد بهتری دارد.
کلید واژگان: مخزن الیاف پیچی شده، بهینه سازی، الگوریتم ژنتیک، روش چند سطحی، ترتیب چیدمان، ضریب شکل، ژئودزیکIn this paper, multi-stage optimum design of composite pressure vessels is presented. The design variables for composite vessels include the head shape, the winding angle, the layer thickness, the number of layers, and the stacking sequence. A parameter called modified shape factor is introduced as an objective function. This parameter takes into account the effects of the internal pressure and volume, the vessel weight, and the composite material properties. The proposed algorithm uses genetic algorithm and finite element analysis to optimize the design parameters. As a few examples, this procedure is implemented on geodesic and ellipsoidal heads. The results show that for the given vessel conditions, the geodesic head shape with helical winding angle of nine degrees has the better performance
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.