به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

non-uniform magnetic field

در نشریات گروه مکانیک
تکرار جستجوی کلیدواژه non-uniform magnetic field در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه non-uniform magnetic field در مقالات مجلات علمی
  • محمد نعمتی، محمد سفید*، آرش کریمی پور
    ارزیابی مقدار تولید آنتروپی طی انتقال حرارت جابجایی طبیعی درون محفظه ای دوبعدی حاوی نانوسیال غیرنیوتنی، هدف از انجام این پژوهش با استفاده از روش شبکه بولتزمن است. محفظه در معرض جذب/تولید حرارت یکنواخت و میدان مغناطیسی یکنواخت و غیریکنواخت در زوایای مختلف قرار دارد. ویژگی کار حاضر، بررسی اثر تشعشع حجمی و شکل دیواره سرد محفظه در سه شکل صاف، منحنی و مورب بر مشخصات جریان است. کاربرد در طراحی خنک کننده های الکترونیکی و کلکتورهای خورشیدی ازجمله موارد عملی این تحقیق است. تطابق قابل قبول نتایج حاصل شده با مطالعات مرتبط قبلی، صحت نتایج ارائه شده را تایید کرد. بر اساس نتایج، وجود پارامتر تشعشع منجر به بهبود انتقال حرارت می شود که این اثر به ازای افزایش شاخص توانی سیال مشهودتر است. علاوه بر کاهش عدد ناسلت به ازای افزایش شاخص توانی سیال، اثربخشی وجود میدان مغناطیسی در کاهش مقدار آنتروپی و نرخ انتقال حرارت به ازای کاهش شاخص توانی سیال افزایش می یابد. دستیابی به قدرت جریان و عدد ناسلت بالاتر به ترتیب تا حدود 40٪ و 61٪، به ازای اعمال میدان مغناطیسی عمودی و غیریکنواخت امکان پذیر است. اگرچه به ازای تولید حرارت، پایین ترین مقدار شاخص عملکرد حرارتی و عدد ناسلت وجود خواهد داشت، اما بیشترین اثرگذاری میدان مغناطیسی در حالت تولید حرارت مشاهده می شود. با طراحی دیواره به شکل صاف علاوه بر افزایش شاخص عملکرد حرارتی، کاهش عدد بجان نیز مقدور است.
    کلید واژگان: جابجایی طبیعی، نانوسیال غیرنیوتنی، تشعشع حجمی، تولید آنتروپی، جذب، تولید حرارت یکنواخت، میدان مغناطیسی غیریکنواخت
    Mohammad Nemati, Mohammad Sefid *, Arash Karimipour
    The target of this research is to investigate the amount of entropy production during natural convection inside a 2D chamber containing a non-Newtonian nanofluid using the lattice Boltzmann method. The chamber is exposed to uniform heat absorption/production and uniform and non-uniform magnetic field at different angles. The feature of the present work is to evaluate the effect of thermal radiation and the shape of the cavity cold wall in three shapes: smooth, curved and diagonal on the flow characteristics. Application in the design of electronic coolers and solar collectors is one of the practical cases of this numerical research. Acceptable agreement of the obtained results with previous related studies confirmed the validity of the presented results. Based on the results, the presence of radiation parameter leads to the improvement of heat transfer, which is more evident due to the increase of fluid power-law index. In addition to reducing the Nusselt value for enhancing the fluid power-law index, the effectiveness of the presence of the magnetic field in reducing the entropy and heat transfer rate enhances as the fluid power-law index decreases. It is feasible to attain the flow strength and the Nusselt value up to 40% and 61% more, respectively, by applying a vertical and non-uniform magnetic field. Although for heat production mode, there will be the lowest value of thermal performance index and the Nusselt value, the greatest influence of the magnetic field is observed in the heat production mode. By designing the wall in a smooth shape, in addition to increase the thermal performance coefficient, it is possible to decline the Bejan value.
    Keywords: Natural Convection, Non-Newtonian nanofluid, Volumetric radiation, Entropy Production, Uniform heat absorption, production, Non-uniform magnetic field
  • محسن ایزدی*
    در این مقاله تاثیر چرخش حفره پر شده با مواد متخلخل که در معرض دو میدان مغناطیسی متغیر قرار گرفته است بر انتقال حرارت جابجایی طبیعی مورد بررسی قرار میگیرد. دو نیم استوانه گرم در حال خنک شدن از طریق انتقال حرارت جابجایی طبیعی محیط متخلخل هستند. دو میدان مغناطیسی جریان نانوسیال و انتقال حرارت جابجایی طبیعی درون حفره متخلخل را تحت تاثیر قرار میدهد. معادلات مشخصه مرتبط با جریان سیال شامل معادله پیوستگی، مومنتوم و دو معادله انرژی مربوط به نانو سیال و ماتریس جامد محیط متخلخل جهت پیش بینی رفتار مسیله مورد نظر حل شده است. تاثیر زاویه چرخش حفره بر خطوط جریان و میدان دما بررسی شده است. نتایج نشان میدهد که افزایش زاویه چرخش تاثیرات نوسانی بر روی بزرگی خطوط جریان دارد. برای زاویه چرخش =20 و =100 جابجایی طبیعی هر دو فاز تشدید شده است. چرخش حفره بستگی به چگونگی قرارگیری نیروهای لرنز و کلوین ناشی از میدان مغناطیسی سبب تقویت و یا تضعیف انتقال حرارت جابجایی سیال نانو شده و در نتیجه باعث تغییر عدد ناسلت هر دو فاز محیط متخلخل میشوند.
    کلید واژگان: جابجایی طبیعی، نانوسیال هیبریدی، میدان مغناطیسی غیر یکنواخت، محیط متخلخل
    Mohsen Izadi *
    Here, the effect of rotating cavity filled by porous materials exposed to two variable magnetic fields on the heat transfer natural convection is investigated. The two hot semicylinder are cooled by the heat transfer through the porous medium. The two magnetic fields affect the nanofluid flow and the heat transfer of the natural convection inside the porous cavity. The characteristic equations related to the fluid flow including the continuum equation, momentum and two nano-fluid and the solid-state matrix energy equations of the porous medium have been solved to predict the problem behavior. The influence of the cavity rotation angle on the streamlines and temperature field is investigated. The results show that increasing the rotation angle has oscillatory effects on the magnitude of the streamlines. For the rotation angles = 20 and = 100 the heat transfer via both phases is intensified. The rotation of the cavity depends on how the magnetic field-induced Lorentz and Kelvin forces amplify or weaken the heat transfer, thereby altering the Nusselt number of both phases of porous medium.
    Keywords: Natural Convection, hybrid nanofluid, Non-uniform Magnetic Field, Porous media
  • Mohammad Nemati, Mohammad Sefid *, Ali J. Chamkha
    In the present work, heat transfer and entropy generation due to the natural convection of Newtonian and non-Newtonian fluids in two types of shear thinning and shear thickening inside a right-triangular cavity under the effect of uniform and non-uniform magnetic field by multiple relaxation time lattice Boltzmann methods have been investigated. The aspect ratio of the cavity is variable and the magnetic field is applied from left to right and perpendicular to the gravity of the cavity. The present work is validated with previous references and results presented in the form of tables, diagrams and streamlines, isothermal lines, and entropy lines. The simulation is done by writing the computer code in the Fortran language. The effect of Rayleigh number, aspect ratio, power-law index of fluid, Hartmann number and angle, and type of magnetic field applied on fluid flow and heat transfer characteristics has been evaluated. The results show that in all cases, increasing the Hartmann number and fluid power-law index leads to a decrease in the strength of flow, heat transfer rate, and entropy generated and the percentage of this effect varies depending on the number of other variables. By applying a magnetic field non-uniformly, the flow strength and heat transfer rate can be increased to about 45% and 20%, respectively. At higher Hartmann numbers, the effect of changing the type of magnetic field applied is more pronounced. The angle of the magnetic field applied is a determinant parameter on the amount of heat transfer so that the average Nusselt number in the horizontal mode is on average 15% less than in the vertical mode. Increasing of power-law index dramatically reduces the magnetic field effect so that it is ineffective for the shear thickening fluid, the type of magnetic field applied. By increasing the Rayleigh number and the aspect ratio of the cavity, the flow strength and the rate of heat transfer increase and the effect of the magnetic field becomes more pronounced. This study can be useful in the optimal design of industrial and engineering equipment, including electronic coolers.
    Keywords: Natural convection, Power-law Fluids, Non-uniform magnetic field, Entropy generation, Variable Aspect Ratio, Triangular Cavity, MRT-LBM
  • محمد نعمتی، محمد سفید*
    در کار حاضر مقدارآنتروپی تولید شده ناشی ازانتقال حرارت دوگانه سیال با مدل توانی درون محفظه دو بعدی متمایل تحت اثرمیدان مغناطیسی یکنواخت و غیر یکنواخت با وجود جذب/تولید حرارت بررسی شده است. مهمترین نتایج عبارتنداز: (الف) قدرت جریان، مقدار انتقال حرارت و آنتروپی تولید شده با افزایش عدد هارتمن، کاهش عدد رایلی و افزایش شاخص توانی سیال، کاهش می یابد. (ب) با کاهش شاخص توانی سیال، اثر میدان مغناطیسی بارزتر می شود به نحوی که افزایش عدد هارتمن تا بیشترین مقدار، در حدود 52 درصد برای سیال نازک شونده و تا حدود 18 درصد برای سیال ضخیم شونده از مقدار عدد ناسلت متوسط می کاهد. (ج) برای دست یابی به جریانی با قدرت بیشتر و عدد ناسلت متوسط بالاتر می توان از میدان مغناطیسی به صورت غیر یکنواخت به خصوص TMF1 استفاده کرد. هر اندازه عدد هارتمن بیشتر باشد، تغییر در نوع اعمال میدان مغناطیسی مشهودتر است. اثر تغییر در نوع اعمال میدان مغناطیسی برای سیال ضخیم شونده کمترین است. (د) چنانچه نسبت هدایت حرارتی افزایش یابد، بیشترین مقدار عدد ناسلت متوسط حاصل می شود که در این حالت اثر افزایش عدد هارتمن و عدد رایلی محسوس تر می شود. (ه) کمترین مقدار انتقال حرارت، قدرت جریان و اثر میدان مغناطیسی زمانی حاصل می شود که محفظه در زاویه 90+ درجه قرار گیرد که در این حالت عدد ناسلت متوسط تا حدود 82 درصد کمتر از زاویه صفر است. (و) عدد بجان با افزایش ضریب جذب/تولید حرارت، افزایش عدد هارتمن، کاهش عدد رایلی و کاهش نسبت هدایت حرارتی، افزایش می یابد و بیشترین مقدار عدد بجان در زاویه 90+ درجه حاصل می شود.
    کلید واژگان: انتقال حرارت دوگانه، سیال با مدل توانی، میدان مغناطیسی یکنواخت و غیر یکنواخت، تولید آنتروپی، جذب، تولید حرارت یکنواخت، زاویه تمایل محفظه
    Mohammad Nemati, Mohammad Sefid *
    In the present work the amount of entropy produced due to the conjugate heat transfer of power-law fluids during natural convection within the inclined chamber under magnetic field and heat absorption/production is investigated. Outcomes:1-The flow power,the amount of heat transfer and the entropy produced decrease with increasing Hartmann number, decreasing Rayleigh number and increasing the fluid power-law index.2-As the power-law index decreases,the influence of the magnetic field becomes more pronounced.The mean Nusselt number decreases by about 52% for shear thinning fluid and by about 18% for dilatant fluid by increasing the Hartmann number to the highest value.3-To achieve a current with higher power and higher average Nusselt number,the magnetic field can be used non-uniformly,especially TMF1. The larger the Hartmann number, the more pronounced the change in the type of magnetic field applied.The influence of the change in the type of magnetic field applied to the shear thickening fluid is minimal.4-As the thermal conductivity ratio increases, the maximum mean Nusselt number is obtained, in which case the impact of increasing the Hartmann number and the Rayleigh number becomes more pronounced.5-The minimum amount of heat transfer, current strength and magnetic field influence is obtained when the chamber is at an angle of +90 degrees,in which case the average Nusselt number is up to about 82% less than the zero angle.6-The Bejan number increases with increment of heat absorption/production coefficient,increasing Hartmann number, decreasing Rayleigh number and decrement of thermal conductivity ratio,and maximum the Bejan number is obtained at an angle of +90 degrees.
    Keywords: Conjugate heat transfer, Power-law liquids, Uniform, non-uniform magnetic field, Entropy generation, Uniform heat absorption, production, Inclination angle of chamber
  • محمد نعمتی، محمد سفید*

    هدف از این مقاله، بررسی میزان انتقال حرارت و آنتروپی تولید شده به واسطه جابجایی ترکیبی نانوسیال ترکیبی با لحاظ کردن تاثیر حرکت براونی ذرات درون حفره نیم بیضی شکل متمایل با درپوش متحرک است. میدان مغناطیسی به دو صورت یکنواخت و غیر یکنواخت از چپ به راست بر حفره اعمال می شود. شبیه سازی به وسیله روش شبکه بولتزمن با زمان آسایش چندگانه و با نوشتن کد رایانه ای به زبان فرترن صورت گرفته است. نتایج به صورت جداول، نمودارها، خطوط جریان، خطوط هم دما و خطوط آنتروپی ثابت ارایه شده است. تاثیر کسر حجمی نانوذرات) 06 / 0 - 0 (، عدد ریچاردسون) 1 / 0 ، 1 و 10 (، عدد هارتمن) 60 - 0 (نوع اعمال میدان مغناطیسی) یکنواخت و غیر یکنواخت (و زاویه چرخش حفره) 90 ،- 0 و 90 + درجه بر جریان شکل گرفته درون حفره بررسی شده است. نتایج نشان می دهد افزایش کسر حجمی نانوذرات سبب افزایش قدرت جریان، عدد ناسلت متوسط، آنتروپی حجمی کل و عدد بیجان می شود و بیشترین اثر برای عدد ریچاردسون 10 و زاویه تمایل 90 + درجه مشاهده می شود. در تمامی حالات، افزایش عدد هارتمن از قدرت جریان و میزان انتقال حرارت می کاهد و این اثر با افزایش عدد ریچاردسون، کاهش می یابد. با اعمال میدان مغناطیسی به صورت غیر یکنواخت می توان قدرت جریان را تا بیش از 80 درصد و میزان انتقال حرارت را تا 35 درصد افزایش داد. افزایش عدد هارتمن، تاثیر نوع اعمال میدان مغناطیسی را مشهودتر می سازد و انتقال حرارت، بیشترین سهم را در مقدار آنتروپی کل دارد. این مطالعه می تواند در طراحی بهینه تجهیزات صنعتی از جمله خنک سازی تجهیزات الکترونیکی، مفید واقع شود.

    کلید واژگان: جابجایی ترکیبی، میدان مغناطیسی غیر یکنواخت، تولید آنتروپی، روش شبکه بولتزمن با زمان آسایش چندگانه، نانوسیال ترکیبی، حفره متمایل
    Mohammad Nemati, Mohammad Sefid *

    The purpose of this paper is to investigate the heat transfer and entropy generated due to mixed convection of hybrid nanofluid inside the lid-driven semi-oval chamber. The magnetic field is applied uniformly and non-uniformly. The simulation is performed by MRT-LBM and by writing computer code in Fortran language. Effect of Richardson number (0.1, 1 and 10), nanoparticles volume fraction (0-0.06), Hartmann number (0-60), inclination angle of the chamber (-90, 0 and +90 degrees) and type of magnetic field applied (uniform and non-uniform) on the flow formed in the chamber is evaluated. The results show that increasing the volume fraction of nanoparticles increases the flow strength, average Nusselt number, total volumetric entropy and Bejan number and most of the effect is observed for Richardson number 10 and inclination angle +90°. In all cases, increasing the Hartmann number decreases maximum values of streamlines and heat transfer, and this effect decreases with increasing Richardson number. By applying a magnetic field non-uniformly, it can change the flow strength by more than 80% and increase the heat transfer to 35%. Increasing the Hartmann number makes the effect of the non-uniform magnetic field more obvious, and the heat transfer has the largest share in the total volumetric entropy.

    Keywords: Mixed Convection, MRT-LBM, Non-uniform magnetic field, Entropy generation, Hybrid Nanofluid
  • محمد نعمتی، محمد سفید*

    در مطالعه حاضر، میزان آنتروپی تولید شده ناشی از انتقال حرارت دوگانه نانوسیال ترکیبی درون محفظه K شکل تحت اثر میدان مغناطیسی یکنواخت و غیریکنواخت و جذب/تولید گرما یکنواخت بررسی شده است. شبیه سازی با نوشتن کد رایانه ای به زبان فرترن و با استفاده از روش شبکه بولتزمن صورت پذیرفته است. تغییرات عدد رایلی، عدد هارتمن، ضریب جذب/تولید گرما، نسبت هدایت حرارتی، نسبت ابعاد محفظه و نوع اعمال میدان مغناطیسی و کسر حجمی نانوذرات به عنوان متغیرهای اصلی این بررسی مورد ارزیابی قرار گرفته اند. نتایج نشان داد می توان قدرت جریان، میزان انتقال حرارت و آنتروپی تولید شده را با اعمال میدان مغناطیسی کاهش داد. کاهش کمتر عدد ناسلت متوسط با غیر یکنواخت اعمال کردن میدان مغناطیسی حاصل می شود. افزایش ضریب جذب/تولید گرما به دلیل افزایش دمای مجموعه منجر به کاهش عدد ناسلت متوسط می شود که این اثر با افزایش عدد هارتمن، بیشتر می شود. افزودن نانوذرات به سیال پایه در حالتی که هدایت پدیده غالب است، موجب افزاش میزان انتقال حرارت می شود. انتقال حرارت تابعی از نسبت ضریب هدایت حرارتی و عدد رایلی بوده و افزایش این دو پارامتر اثرات جابجایی را افزایش می دهد و در این شرایط، اثر افزایش عدد هارتمن نمایان تر است. افزایش نسبت ابعاد محفظه منجر به کاهش عدد ناسلت متوسط و آنتروپی شده ولی اثر افزودن نانوذرات در این حالت بیشتر است. آنتروپی تولیدی با افزایش عدد هارتمن کاهش و با افزایش عدد رایلی و ضریب جذب/تولید گرما افزایش می یابد.

    کلید واژگان: انتقال حرارت دوگانه، نانوسیال ترکیبی، میدان مغناطیسی غیر یکنواخت، تغییر نسبت ابعاد محفظه، تولید آنتروپی، جذب، تولید حرارت یکنواخت، روش شبکه بولتزمن
    Mohammad Nemati, Mohammad Sefid *

    In the present study, the entropy generated due to the conjugate heat transfer of the hybrid nanofluid inside the K-shaped chamber under magnetic field and uniform heat absorption/generation is investigated. The simulation was performed by writing computer code in Fortran language using the lattice Boltzmann method. Variations in Rayleigh number, volumetric fraction of nanoparticles, Hartmann number, heat absorption/generation coefficient, thermal conductivity ratio, chamber aspect ratio and type of magnetic field applied have been evaluated as the main variables of this study. The findings showed that the flow strength, heat transfer rate and entropy produced could be reduced by applying a magnetic field. A lower reduction of the average Nusselt number is achieved by non-uniform application of a magnetic field. Increasing the heat absorption/generation coefficient due to increasing the set temperature leads to decreasing the mean Nusselt number, which this influence increases with increasing the Hartmann number. Addition of nanoparticles to the base fluid in which the conduction of the phenomenon is predominant, increases the rate of heat transfer. Heat transfer is a function of the ratio of thermal conductivity and Rayleigh number that increasing these two parameters increases the convection effects, and in this case, the effect of increasing the Hartmann number is more pronounced. Increasing the chamber aspect ratio leads to a decline in the mean Nusselt number and entropy production, but the effect of adding nanoparticles is greater in this case. Entropy production decreases with increasing Hartmann number and increases with Rayleigh number and heat absorption/generation coefficient.

    Keywords: Conjugate Heat Transfer, Hybrid Nanofluid, Non Uniform Magnetic Field, Variation of Aspect Ratio, Entropy Production, Uniform Heat Absorption, Generation, Lattice Boltzmann Method
  • محمد نعمتی، محمد سفید*
    هدف از مطالعه پیش رو، بررسی اثر جهت اعمال میدان مغناطیسی به دو صورت یکنواخت و غیریکنواخت بر انتقال حرارت سیال نیوتنی و غیرنیوتنی با مدل توانی با استفاده از روش شبکه بولتزمن با زمان آسایش چندگانه است. شبیه سازی با نوشتن کد رایانه ای به زبان فرترن صورت پذیرفته است. جابجایی طبیعی درون محفظه ای دو بعدی حاوی مانع لوزی شکل ایجاد می شود که این مانع در سه حالت دمایی مختلف بررسی می شود. دیواره سرد محفظه در سه شکل صاف، منحنی و مورب ارزیابی می شود. نتایج نشان می دهد، افزایش عدد رایلی و کاهش شاخص توانی و عدد هارتمن سبب افزایش قدرت جریان و میزان انتقال حرارت می شود. طراحی دیواره به صورت صاف به طور میانگین در حدود 70 درصد قدرت جریان و 30 درصد انتقال حرارت را افزایش می دهد. قرارگیری مانع در دمای ثابت سرد به طور متوسط سبب افزایش 20 درصدی عدد ناسلت متوسط می شود. اثر میدان مغناطیسی برای دیواره صاف بیشترین و برای دیواره مورب کمترین است و این اثر با افزایش شاخص توانی کاهش می یابد. در حالت کلی، غیریکنواخت اعمال کردن میدان مغناطیسی در حدود 10 درصد عدد ناسلت متوسط را افزایش می دهد و منجر به افزایش قدرت جریان می شود. نتایج نشان می دهد تاثیر شکل دیواره و نوع اعمال میدان مغناطیسی برای سیال ضخیم شونده، ناچیز است. کاهش بیشتر قدرت جریان و عدد ناسلت متوسط با اعمال میدان مغناطیسی به صورت افقی مشاهده می شود.
    کلید واژگان: جابجایی طبیعی، میدان مغناطیسی غیر یکنواخت، روش شبکه بولتزمن با زمان آسایش چندگانه، شکل مختلف دیواره، سیال با مدل توانی، شرط دمایی مختلف مانع
    Mohammad Nemati, Mohammad Sefid *
    The purpose of this work is to investigate the effect of magnetic field direction on heat transfer of Newtonian and non-Newtonian fluids in both uniform and non-uniform forms, with the power-law model by using the multiple relaxation time lattice Boltzmann method (MRT-LBM) with written computer code by Fortran language. The natural convection is created in the two-dimensional cavity with lozenge barrier and is examined in three different temperature boundary conditions. The cold wall of the cavity is investigated in three modes: smooth, curved and diagonal. The results show that increasing the Rayleigh number and decreasing the power-law index and the Hatmann number increase the strength of fluid flow and heat transfer. The smooth design of the wall increases the average Nusselt number by about 30%. Placing the barrier at a constant cold temperature increases the average Nusselt number by 20% on average. The effect of the magnetic field is highest for the smooth wall and lowest for the diagonal wall and this effect decreases with increasing the power-law index. In general, an applied non-uniform magnetic field increases the average Nusselt number by about 10% and increases the flow strength. The effect of wall shape and type of magnetic field applied on shear thickening fluid is negligible. Further reduction of flow strength and average Nusselt number is observed by applying a magnetic field horizontally.
    Keywords: Natural Convection, Non Uniform Magnetic Field, Power-law Fluids, Multiple Relaxation Time Lattice Boltzmann Method, Different Wall Shape, Various Thermal Boundary of Barrier
  • موسی محمدپورفرد*، مرتضی رستمی دیباور
    اخیرا سیستم های جدید ذخیره سازی انرژی با استفاده از مواد تغییر فاز دهنده مورد توجه زیادی قرار گرفته اند، زیرا این مواد در هنگام تغیر فاز، می توانند انرژی را در دمای ثابت جذب و آزاد کنند. با توجه به این ویژگی، آنها به طور گستردهای در سیستم های انرژی استفاده می شود. در این مطالعه، تاثیر اعمال میدان مغناطیسی غیر یکنواخت با گرادیان های مثبت و منفی بر روی انتقال حرارت و پیشروی جبهه انجماد و ذوب نانوسیال مغناطیس شونده فاقد هدایت الکتریکی بعنوان یک ماده تغییر فاز دهنده در یک محفظه چهارگوش در حضور میدان های مغناطیسی مختلف به صورت عددی با استفاده از مدل تک فازی همگن و روش حجم محدود، مورد بررسی قرار گرفته است. در کار حاضر برای تحلیل فرآیند انجماد و ذوب مواد تغییر فاز دهنده بهبود یافته با نانوذرات (که در مطالعه حاضر از نانوذرات اکسید آهن استفاده شده است،). از روش آنتالپی- تخلخل استفاده شده است. با توجه به نتایج بدست آمده، نانوذرات و اعمال میدان مغناطیسی باعث سرعت بخشیدن به فرآیندهای ذوب و انجماد می شود. میدان مغناطیسی با گرادیان منفی در جهت محور عمودی، در هر دو حالت انجماد و ذوب بیشترین تاثیر را در پیشروی سریع جبهه انجماد و ذوب و در نتیجه کوتاه تر شدن زمان این فرآیند دارد.
    کلید واژگان: پیشروی ذوب و انجماد، مدل تکفازی همگن، روش آنتالپی- تخلخل، میدان مغناطیسی غیر یکنواخت
    M. Mohammadpourfard *, M. Rostami Dibavar
    Developing new energy storage systems using Phase Change Materials (PCMs) have been recently attracted considerable interest, since these materials during phase transition, could absorb and release energy at a constant temperature. Due to this feature, they are widely used in energy systems. In this investigation, the effects of applying nonuniform magnetic field with negative and positive gradients on the heat transfer and also on the development of solidification and melting processes of a non-electrical conductive magnetic nano-fluid as a PCM in an enclosure in the presence of different magnetic fields have been studied numerically using single phase homogenous model and control volume technique. In the present study, the enthalpy-porosity method has been used for analyzing the solidification and melting process of phase change materials enhanced with nanoparticles (in this study Fe3O4 nanoparticles have been used). The obtained results show using nanoparticles and applying magnetic fields increase the development of solidification and melting processes. Due to heat transfer through vertical walls, the effect of the magnetic field with positive and negative gradients only in the y-axis direction has been investigated. Since the magnetic field is applied only to the mushy zone, a magnetic field with a negative gradient in the vertical axis direction will have the greatest effect on the progression of the solidification and melting process so that the time of these processes will be decreased.
    Keywords: Melting, Solidification Development, Single Phase Homogenous Model, Enthalpy-Porosity Method, Non-uniform Magnetic Field
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال