به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

rolling element bearing

در نشریات گروه مکانیک
تکرار جستجوی کلیدواژه rolling element bearing در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه rolling element bearing در مقالات مجلات علمی
  • Emadaldin Sh Khoram-Nejad, Abdolreza Ohadi *
    Investigating the sound radiated from faulty rolling element bearings (REBs) in rotor-bearing systems is as crucial as studying their vibration characteristics. This approach offers experts and researchers a more comprehensive understanding of faulty REB behavior, enhancing fault diagnosis capabilities. This study examines the impact of bearing faults, pedestal looseness, and shaft eccentricity on the vibro-acoustic characteristics of REBs. Additionally, it assesses the influence of fault severity and compound fault scenarios on these behaviors. A 6-degree-of-freedom (DOF) dynamic model is developed for an SKF 6205 bearing, including the shaft, inner ring, outer ring, and pedestal. The Hertzian theory is employed to model contact between the bearing balls and inner/outer rings. The governing equations are solved using the Runge-Kutta method to determine the surface velocity of the REB components, yielding a 4.56% error compared to experimental results, demonstrating good agreement. Based on the surface velocity, the sound pressure level (SPL) is calculated by modeling the inner and outer rings as cylindrical sound sources. The results reveal that auditory and visual observation can identify shaft eccentricity, while sound is a more sensitive indicator of bearing faults. Detecting incipient faults remains challenging, regardless of whether vibration or sound measurement tools, such as accelerometers or sound level meters, are employed. Furthermore, phase portraits indicate that pedestal looseness and bearing faults, unlike shaft eccentricity, result in chaotic and unpredictable motion, which may explain the sudden failures often observed in industrial REBs.
    Keywords: Rolling Element Bearing, Bearing Faults, Vibro-Acoustic Behavior, Pedestal Looseness, Sound Pressure Level
  • علی فراهانی، علی داودآبادی، سمیه محمدی، مهدی بهزاد*
    تشخیص هوشمند عیوب یاتاقان غلتشی امری بسیار مهم در زمینه پایش وضعیت تجهیزات دوار است. تشخیص زودهنگام عیب ها جهت نگهداری و برنامه ریزی در واحدهای صنعتی ارزش اقتصادی بسیاری دارد. استفاده از الگوریتم های سنتی تشخیص هوشمند، متشکل از دو بخش استخراج ویژگی و دسته بندی، زمان بر و نیازمند تجربه کارشناسان این حوزه برای استخراج مشخصه های مناسب هستند. شبکه عصبی پیچشی در مقایسه با روش های سنتی، می تواند با دقت بالا، حجم وسیعی از اطلاعات را پردازش و ویژگی ها را به طور خودکار از سیگنال ارتعاشی استخراج کند. به همین سبب در این پژوهش سعی می شود با استفاده از این روش، علاوه بر تعیین سلامت یا خرابی یاتاقان غلتشی، نوع عیوب در صورت تشخیص خرابی شناسایی گردد. در این راستا از یک شبکه عصبی پیچشی ساده و کم عمق برای بررسی سه عیب متداول یاتاقان غلتشی استفاده می شود. به منظور یافتن بهترین دقت و کارایی شبکه از ورودی های مختلف از جمله سیگنال زمانی، طیف فرکانسی و انولوپ سیگنال استفاده و نتایج آنها با یکدیگر مقایسه می گردد. برای پیاده سازی و ارزیابی الگوریتم ها، یک ستاپ آزمایشگاهی طراحی و ساخته شده است و با ایجاد خرابی های مصنوعی روی یاتاقان ها، تست های آزمایشگاهی در چهار وضعیت سالم، خرابی رینگ داخلی، خرابی رینگ خارجی و خرابی ساچمه در 36 شرایط کاری مختلف (9 سرعت دورانی متفاوت و در هر سرعت با 4 حالت بارگذاری) انجام گردیده است. نتایج حاصله نشان می دهد که دقت و کارایی مدل در تشخیص وجود و نوع عیب یاتاقان غلتشی در حالتی که ورودی آن طیف فرکانسی است، بیشتر از دو ورودی دیگر و برابر 95 درصد می باشد.
    کلید واژگان: پایش وضعیت، عیب یابی هوشمند، شبکه عصبی پیچشی، یاتاقان غلتشی، شرایط کاری متغیر، آنالیز ارتعاشات
    A. Farahani, A. Davoodabadi, S. Mohammadi, M. Behzad *
    Intelligent detection of rolling element bearing faults is a critical aspect of rotating equipment condition monitoring. Early detection of faults holds significant economic value for industrial units in terms of maintenance and planning. Traditional intelligent fault detection algorithms, which rely on a combination of feature extraction and signal classification, are time-consuming and require a high level of expertise. In comparison to traditional methods, Convolutional Neural Networks (CNNs) can process a large volume of data with high accuracy and automatically extract features from vibration signals. Therefore, in this research, an attempt has been made to use a simple and shallow CNN to not only determine the health state of rolling element bearings but also identify the defective element. For this purpose, a CNN model has been employed to investigate three common faults in rolling element bearings. In order to achieve the best performance, various inputs, including time waveforms, spectra, and envelopes, have been utilized. To implement and validate the algorithms, a laboratory setup was designed and constructed. After creating artificial faults on the bearings, experiments were conducted under 36 different operating conditions, comprising 9 different speeds, each at 4 different loads, encompassing four healthy states, including healthy, inner race fault, outer race fault, and rolling element fault. The obtained results have illustrated that the fault detector model with the frequency spectrum input is more accurate, with an accuracy of 95% than the models receiving the other two inputs.
    Keywords: Condition Monitoring, Intelligent Fault Diagnosis, Convolutional Neural Network, Rolling Element Bearing, Variable Operating Conditions, Vibration Analysis
  • Mehdi Behzad, Hassan Izanlo, Ali Davoodabadi, Hesam Addin Arghand

    Fault detection of rolling element bearing (REB), has a very effective role in increasing the reliability of machinery and improving future decisions for rotating machinery operation. In this study, a new method based on a convolutional neural network (CNN) is developed for fault detection of REB. Its performance will be compared with other artificial intelligence (AI) techniques, 2-layer, and deep feedforward neural network (FFNN). In this regard, a set of accelerated-life tests has been implemented on an experimental platform. The models are aimed to recognize the impact pattern in the raw signals generated by faulty REBs. The innovation of the present study is to convert the high-dimensional input as a raw temporal signal to low-dimensional output. The developed method does not need preprocessing of data. Using several types of accelerated tests prevents overfitting. The result shows that the accuracy of the developed CNN-based method is 98.6% for all data sets and 94.6% for the validation dataset. The accuracy of the 2-layer FFNN is 85% for all datasets and 74.2% for the validation dataset and the accuracy of the deep FFNN is 82% for all datasets and 67% for the validation dataset. Therefore, the developed CNN-based method has better performance than the FFNN-based models.

    Keywords: Fault detection, rolling-element bearing, convolutional neural network, feed-forward neural network, impact detection
  • Henry Omoregbee *, Modestus Okwu, Mabel Olanipekun, Bright Edward
    This paper presents the detection of fault prognostics in bearings with the application of extended Takagi-Sugeno fuzzy recursive least square algorithms (exTSFRLSA). The nonlinear system is decomposed into a multi-model structure, consisting of linear models that are not inherently independent, due to the fuzzy regions defined in exTSFRLSA. The exTSFRLSA was developed to tune, adjust and adapt the parameters involved in the propagation model, as it tends to update itself with the availability of new data. This method is suitable for the online identification of systems because of its unsupervised learning pattern which dwells on a mechanism cantered on rule-based evolution. Scenarios considered for the rule-based modification and upgrade are quite diverse, thereby ensuring effective comparison of measured and predicted defect size. An estimation of the remaining useful life was determined successfully with the proposed method, showing that the system performance health indicator reflects bearing degradation, and it was concluded that exTSFRLSA can be used for fault prediction of bearing where rolling element  are involved, especially while its operation is associated with fluctuating speed and load conditions
    Keywords: Prognostics, Rolling element bearing, Remaining useful life, Extended Takagi Sugeno, Fuzzy, Recursive least squares method
  • Mehdi Behzad *, Amirhossein Mollaali, Motahareh Mirfarah, Hesam Addin Arghand

    Estimation of remaining useful life (RUL) of rolling element bearings (REBs) has a major effect on improving the reliability in the industrial plants. However, due to the complex nature of the fault propagation in these components, their prognosis is affected by various uncertainties. This effect is intensified when the recorded data is offline, which is very common for many industrial machines due to the lower cost rather than the online monitoring strategy. In the present paper, in order to overcome the shortcoming of the feed-forward neural network (FFNN) in REBs prognostics, a new method for considering two main uncertainties (caused by the measurement and process noises) is proposed, in the presence of offline data acquisition. Inthe proposed method, the primary RUL probability distribution corresponded to each offline measured data is predicted, utilizing the outputs of trained FFNNs. Then, the predicted RUL distribution will become more robust in confronting the temporal changes, by taking into account the approval of pervious stage predictions to the present prediction. As a result, the overall probability distribution of REBs RUL and also its confidence levels (CLs) areobtained. Finally, the evaluation of the proposed method is performed byutilizing bearing experimental datasets. The results show that the proposed method has the capability to express the estimated RUL CLs in the offline data acquisition method, effectively. By providing a probabilistic perspective, the proposed method can improve the reliability of the asset and also the decision-making about the future of the industrial plants.

    Keywords: Remaining useful life, Rolling element bearing, Feed-forward neural network, Uncertainty, Offline data acquisition
  • MohammadAmir Bayatinezhad, Arash Mohammadi *, Ali Davood Abadi

    In this paper, the temperature feature was employed to track down the degradation trend of rolling element bearings. The remaining useful life(RUL) of the rolling element bearing was predicted byassuming root mean square growth (RMS) of the acceleration signal to exponential function form and extraction of two other features. Then, the performance of these features was investigated in the prediction using a recurrent neural network(RNN). The experimental data of the accelerated life test on the rolling element bearing have been extracted from the prognostic. Contrary to the previous works, this paper considers the temperature feature instead of the time feature and also assuming the RMS of the acceleration signal to the exponential function form and using a RNN which causes a newmodel more applicable than previous models.

    Keywords: Rolling element bearing, Remaining useful life, Recurrent Neural Network, Degradation, Condition monitoring
  • عباس روحانی بسطامی*، یوسف خانوردی
    یاتاقان های غلتشی یکی از اجزاء پرکاربرد در ماشین های دوارند. روش های گوناگونی در حوزه ی زمان، فرکانس و فرکانسٓ فرکانس برای تشخیص عیب در یاتاقان های غلتشی بیان شده است. در این مقاله، روشی در حوزه ی فرکانسٓ فرکانس با استفاده از مفهوم تناوبیٓ پایا، که منجر به محاسبه ی چگالی همبستگی طیفی می شود، برای تشخیص خرابی یاتاقان به کار گرفته شده است. محاسبه ی تابع چگالی همبستگی طیفی علاوه بر روش مستقیم فرکانسی با استفاده از تبدیل ویگنر ویل نیز بیان شده است. با استفاده از این روش نموداری سه بعدی، دارای دو فرکانس طیفی و دوره یی و دامنه ایجاد می شود. نتایج حاصل از به کارگیری این روش در مثالی عملی بررسی شده است. علی رغم پیچیدگی محاسباتی، این روش نسبت به روش های کلاسیک نظیر آنالیز انولوپ، نیاز به تعیین باند فرکانسی برای فیلتر ندارد. همچنین اطلاعاتی مانند فرکانس دوره یی و فرکانس طیفی، از روی نمودار استخراج می شود.
    کلید واژگان: یاتاقان غلتشی، عیب یابی، تناوبی، پایا، چگالی همبستگی طیفی
    A. Rohani Bastami, * Y. Khanverdi
    Rolling element bearing are one of the most commonly used components in the rotating machines and early detection of bearing faults can prevent potential catastrophic failures. Various methods in time, frequency and frequency-frequency domains are expressed for the fault diagnoses of rolling element bearings. In this paper, a frequency-frequency domain method by means of cyclostationary concept is used to calculate spectral correlation density (SCD) function. SCD is used to detect bearing fault signature in vibration signal of the machine. In this method, signal is assumed stationary in the cyclic periods. Using this method, three-dimensional diagram of spectral correlation density function is generated on a dual frequency axis for spectral and cyclic frequency. Using this method, the hidden cycles in the presence of noise, which cannot be seen in conventional Fourier transform, become clear. There is a difference between meaning of spectral frequency and cyclic frequency. The spectral frequency shows resonance frequency excited by periodic impacts, but cyclic frequency shows the frequency of impacts itself. SCD can be seen as a tool for generalization of the detection of amplitude-modulated signals. SCD can show both carrier and modulating frequency of the signal. The possibility of application of this method in rolling element bearing fault detection is shown in a practical example, and the results have been presented. The practical example is a bearing with inner ring fault used in a centrifugal pump. The vibration is measured by an accelerometer in high frequency band and then transferred to the computer. Necessary codes are written in the Matlab software. Despite its computational complexity, this method is preferable compared to classical methods such as envelop, since it does not need to determine the frequency band for the filter and it can show more details. The spectral correlation density function proves to be a more accurate method and provides comprehensive information about the signal.
    Keywords: Rolling element bearing, fault detection, cyclostationary, spectral correlation density
  • Sunil Tyagi *, S. K. Panigrahi
    A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN) classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.
    Keywords: Artificial Neural Network (ANN), Discreet Wavelet Transform (DWT), Fault Diagnosis, Rolling Element Bearing, Support Vector Machine (SVM)
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال