به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « Long Short-Term Memory (LSTM) » در نشریات گروه « مکانیک »

تکرار جستجوی کلیدواژه « Long Short-Term Memory (LSTM) » در نشریات گروه « فنی و مهندسی »
  • Javad Khoramdel, Ahmad Moori, Majid Mohammadi Moghaddam, Esmaeil Najafi *
    This paper presents a real-time approach for detecting compensatory movements in upper limb rehabilitation for stroke patients using deep learning algorithms. The study applied Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), Long-Short-Term-Memory (LSTM), and Transformer to analyze Microsoft Kinect data from the Toronto Rehab Stroke Pose dataset. The models were trained with focal loss to address imbalanced data distribution. The simulation results showed that the proposed deep learning algorithms are effective in detecting compensatory movements. The GRU-based models provide the fastest results and the transformer models exhibit the best accuracy and fastest inference time on the employed CPU .
    Keywords: Deep Learning, Transformer, Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), Long-Short-Term-Memory (LSTM), Rehabilitation}
  • Javad Khoramdel, Ahmad Moori, Majid Mohammadi Moghaddam, Esmaeil Najafi *
    This paper presents a real-time approach for detecting compensatory movements in upper limb rehabilitation for stroke patients using deep learning algorithms. The study applied Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), Long-Short-Term-Memory (LSTM), and Transformer to analyze Microsoft Kinect data from the Toronto Rehab Stroke Pose dataset. The models were trained with focal loss to address imbalanced data distribution. The simulation results showed that the proposed deep learning algorithms are effective in detecting compensatory movements. The GRU-based models provide the fastest results and the transformer models exhibit the best accuracy and fastest inference time on the employed CPU .
    Keywords: Deep Learning, Transformer, Recurrent Neural Networks (RNN), Gated Recurrent Unit (GRU), Long-Short-Term-Memory (LSTM), Rehabilitation}
  • Ehsan. Akbari *

    Renewable sources for power generation are being popular day by day and solar PV is mostly first choice. In addition, the energy output of solar PV is highly affected by weather conditions like temperature, irradiance, sky conditions etc. Therefore, an intelligent model based on weather conditions is essential for estimation of solar energy output to meet the needs of energy required. The prediction of PV power output is critical to security, operation, scheduling and energy management. Stability of power grid can also be increased if accuracy of power production in PV plants is further enhanced. This paper has worked on LSTM and used recurrent neural networks (RNN) for forecasting of power production and it is seen that the results of RNNs are nearly compatible with the realistic power production which is evident from less mean absolute error (MAE), mean absolute percentage error (MAPE), Root Mean Square Percentage Error (RMPSE) of magnitude. The comparison with different layers of LSTM model for each season of weather is analyzed

    Keywords: Solar PV, Forecasting, Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), MeanAbsolute Percentage Error (MAPE)}
  • مهدی بهزاد*، سید علی حسین لی، حسام الدین ارغند، افشین بنازاده

    در این مقاله، بیشینه ی دامنه ی سیگنال زمانی شتاب به عنوان مشخصه ی ارتعاشی مناسب که نمایش گر خوبی از روند زوال یاتاقان غلتشی است انتخاب شده و به منظور پیش بینی روند زوال و عمر مفید باقیمانده به کار رفته است. در گام نخست با به کار بردن یک انتقال لگاریتمی، این مشخصه ی ارتعاشی به یک سری زمانی پایدار تبدیل شده است. سپس با کمک شبکه ی عصبی بازگشتی حافظه ی طولانی کوتاه مدت، نحوه ی رشد این مشخصه ی ارتعاشی پیش بینی شده است. این پیش بینی روی داده های دو نمونه از یاتاقان های آزمایش پرونوستیا که در ادبیات فن شناخته شده بوده و مورد استفاده محققین بسیاری قرار گرفته، اعمال شده است. با توجه به نتایج پیش بینی مدل، مدت زمان باقیمانده تا رسیدن این مشخصه ی ارتعاشی به یک آستانه ی معین ارایه شده است. همچنین اگر آستانه ی تعیین شده به معنی پایان عمر مفید یاتاقان باشد، می توان از الگوریتم پیشنهاد شده به منظور تخمین عمر مفید باقیمانده نیز بهره جست. نحوه ی عملکرد الگوریتم در راستای این هدف نیز ارایه و ارزیابی شده است.نتایج حاکی از مطابقت خوب پیش بینی مدل با داده های تجربی است.

    کلید واژگان: شبکه ی عصبی بازگشتی, شبکه ی عصبی حافظه ی طولانی کوتاه مدت, پیش بینی عمر یاتاقان غلتشی, پیش بینی ادامه ی سری زمانی, تست عمر پرشتاب یاتاقان}
    M. Behzad *, S.A. Hosseinli, H.A. Arghand, A. Banazadeh

    This paper proposes a remaining useful life (RUL) prediction method that uses the peak of the vibration acceleration signal as an appropriate feature to indicate the degradation process in the rolling element bearings (REBs). In the first step, this feature is transformed into a stationary time series using logarithmic transformation. That is because the long short-term memory neural network (LSTM-NN) works better with the stationary time series. Training the LSTM-NN is performed by this stationary time series as the input and the response is the training time series with values shifted by one time step. Therefore, the LSTM-NN learns to predict the value of the next time step at each point. In other words, to forecast the values of multiple time steps in the future, previous forecasted steps are used as inputs. Next, the values of the future time steps are returned to the main non-stationary form to predict the trend of the peak in the future. Importantly, new measured data can be used to perform new predictions. For this purpose, for every new measured data, the LSTM-NN repeats the mentioned steps and generates a new trend. This algorithm is a trend-dependent method. Therefore, an REB that has a slow degradation stage in its life, which is corresponding to the growth and expansion of defects in REBs, is appropriate to be studied by this algorithm. This method is implemented on two REBs from PRONOSTIA accelerated-life test which have been used by many researchers in the literature. According to the prediction results, the remaining time that peak amplitude trend touches a given threshold is provided. If this threshold is a criterion for the end of life (EoL), this method can be used to determine the RUL. The performance of the proposed method has been evaluated and the presented results are in a good agreement with the experimental data.

    Keywords: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Remaining Useful Life (RUL), Time series forecasting, Bearing accelerated-life test}
  • Ehsan. Akbari *

    Renewable sources for power generation are being popular day by day and solar PV is mostly first choice. In addition, the energy output of solar PV is highly affected by weather conditions like temperature, irradiance, sky conditions etc. Therefore, an intelligent model based on weather conditions is essential for estimation of solar energy output to meet the needs of energy required. The prediction of PV power output is critical to security, operation, scheduling and energy management. Stability of power grid can also be increased if accuracy of power production in PV plants is further enhanced. This paper has worked on LSTM and used recurrent neural networks (RNN) for forecasting of power production and it is seen that the results of RNNs are nearly compatible with the realistic power production which is evident from less mean absolute error (MAE), mean absolute percentage error (MAPE), Root Mean Square Percentage Error (RMPSE) of magnitude. The comparison with different layers of LSTM model for each season of weather is analyzed.

    Keywords: Solar PV, Forecasting, Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), MeanAbsolute Percentage Error (MAPE)}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال