porphyry copper deposit
در نشریات گروه مهندسی معدن-
Mineral Resources have commonly been estimated through the kriging method that assigns weights to the samples based on variogram distance to the estimation point without considering their values. More robust estimators such as spatial copulas are promising tools because they consider both distance and sample values in determining weights. The purpose of this study is to demonstrate the effectiveness of the Gaussian copulas (GC) by estimating the copper grade values in the Sungun porphyry copper deposit located in Iran. Performance of the method was compared to ordinary kriging (OK) and indicator kriging (IK) by running the Jackknife test of cross-validation. The metrics used in measuring performance of the methods are global accuracy and precision of the distribution of the estimates, error statistics, and variability for globally accurate and precise estimates. The case study shows advantages of GC over OK and IK by producing globally accurate and precise estimates with acceptable error statistics and variability.
Keywords: Gaussian Copula, Indicator Kriging, Jackknife Test, Ordinary Kriging, Porphyry Copper Deposit -
The Mineral Prospectivity Map (MPM) is a powerful tool for identifying target areas for the exploration of undiscovered mineral deposits. In this study, a knowledge-driven Index overlay technique was utilized to create the MPM on a regional scale. The complex distribution patterns of geological features associated with mineral deposits were mapped and correlations between these features and mineral deposits were revealed by integrating geological, geophysical, hydrothermal alteration, and fault density data layers. It was found that 23% of the study area was highly prospective, with 77% of the known porphyry copper occurrences located within this area. The normalized density was equal to 3.35, indicating a significant relationship between the known porphyry copper occurrences and their occupied area. The MPM also identified potential tracts outside the known mineralized areas that can be used for exploration and quantitative assessment of undiscovered resources. It is suggested that the MPM is a valuable tool for mineral exploration and could have significant implications for the mining industry.Keywords: Index Overlay, Kerman Cenozoic Magmatic Belt, mineral prospectivity map, Porphyry copper deposit, prediction-area (P-A) plot
-
Identification of geochemical anomalies is a critical task in mineral exploration targeting. Decades of research and technology have resulted in new algorithms and techniques for recognizing anomaly detection methods at various scales and sample media. However, algorithms cannot always reveal the true nature of geological processes. The mineral system concept may contribute to a better understanding of the geological processes required to form and preserve ore deposits at all spatial and temporal scales. The mineral systems concept investigates the geochemical processes occurring within mineral subsystems in soil samples from the porphyry prospect area. The Cu/(Al + Ca) index was used to compare Cu, Mo, and (Pb* Zn)/(Cu*Mo) to highlight the region of interest for mineral potential mapping and pioneer borehole drilling based on fluid-rock interaction and secondary processes (e.g., alteration, weathering, and leaching). Exploratory boreholes validate a better performing Cu/(Al + Ca) index for detecting and refining soil geochemical anomalies.Keywords: soil geochemistry, Porphyry copper deposit, mineral system concept, Kahang porphyry copper deposit
-
تلفیق داده ها یکی از روش هایی است که با استفاده از آن می توان مطالعات اکتشافی در مقیاس ناحیه ای را به صورت یکجا و همزمان بر روی همه داده های در دسترس از منطقه مورد مطالعه انجام داد. نتایجی که با در نظر گرفتن همه داده ها و ارتباط میان آنها به دست می آید، دقت و اطمینان بیشتری دارد. در چنین شرایطی عموما از مدل سازی پتانسیل معدنی برای تعیین نواحی امیدبخش استفاده می شود. در روش جدید معرفی شده در مقاله حاضر ضمن بررسی تیوری زونالیته ژیوشیمیایی در بهبود بخشیدن به نتایج به دست آمده از تهیه مدل پتانسیل معدنی، بخشی از زون فلززایی ارسباران انتخاب و ارایه نقشه آنومالی فوق و تحت کانسار، محدوده های کانی سازی پنهان و پراکنده معرفی شده بررسی شد. همچنین نقشه های شاهد ژیوشیمی تک عنصری، نقشه های ژیوشیمی تولید شده با روش زونالیته، ساختاری، دگرسانی و زمین شناسی با استفاده از موقعیت اندیس های شناخته شده با روش وزن های نشانگر وزن دهی و تولید و در مرحله بعد برای تهیه مدل های پتانسیل معدنی لایه های وزن دار اطلاعاتی با روش لجستیک رگرسیون (LR) تلفیق شدند. در پایان از رخدادهای معدنی شناخته شده کانی سازی مس پورفیری منطقه برای ارزیابی مدل های تولید شده استفاده شد که نتایج نشان می دهد مناطق مشخص شده برای اکتشاف با استفاده ازمدل تهیه شده با استفاده از نقشه شاهد ژیوشیمی زونالیته، انطباق خوبی با رخدادهای معدنی موجود دارد.کلید واژگان: کانسار مس پورفیری، روش وزن های نشانگر، مدل پتانسیل معدنی، ژئوشیمی زونالیتهData integration can be used to conduct exploratory studies on a regional scale simultaneously on all available data from the study area. The results obtained by considering all the data and the relationship between them are more accurate and reliable. In these cases, mineral potential modeling is utilized to determine promising areas. Although GIS-based mineral prospectivity mapping methods have been established, it is important to review which methods of geochemical data analysis result in anomaly maps that, in turn, lead to better models of mineral prospectivity. In this study, instead of using anomalies of pathfinder elements, using geochemical zonality anomalies as one of the several evidential maps resulted in the improved mapping of mineral prospectivity. In addition, whereas weights-of-evidence analysis was used in this study, other methods of data representation and integration for mineral prospectivity mapping can be used. In this study, a part of Arasbaran metallogenic zone was selected and one-element geochemical control maps, geochemical maps produced by zonality, structural, alteration and geological maps were weighted and produced using the position of known indices by the method of weights-of-evidence. In the next step, weighted layers were combined with logistic regression (LR) method to prepare mineral potential models.Keywords: Porphyry copper deposit, Weights of evidence, Mineral potential model, Geochemical zonality
-
به دلیل ارتباط زون های کانی سازی با تغییرپذیری عیار در کانسارهای مس پورفیری، تهیه مدل سه بعدی این زون ها یکی از گام های پیش از تخمین در ارزیابی این تیپ کانسارها به شمار می آید. کیفیت این مدل تاثیر بسزایی بر کیفیت تخمین های ارائه شده برای عیار، طراحی مناسب استخراج بلندمدت و درنهایت کاهش مشکلات بین معدن و کارخانه فرآوری خواهد داشت. روش معمول برای تهیه این مدل استفاده از روش مدلسازی محدود می باشد که فرآیندی پیچیده و زمان بر است. یکی از راه حل های ممکن برای تهیه این گونه مدل ها استفاده از روش های نامحدود همچون روش های هوشمند می باشد. در این مقاله تلاش شده است تا عملکرد دو روش هوشمند شبکه عصبی مصنوعی و ماشین بردار پشتیبان طبقه بندی کننده در جداسازی زون های کانی سازی (شامل زون شسته شده، زون هیپوژن، زون سوپرژن) کانسار مس میدوک مورد مطالعه و بررسی قرار گیرد. برای این منظور از مختصات جغرافیایی (طول و عرض و ارتفاع) داده های حاصل از گمانه های اکتشافی به عنوان ورودی و زون های کانی سازی مشاهده شده در آن ها به عنوان خروجی مدل استفاده شده است. بررسی نتایج حاصل از این الگوریتم های هوشمند در جداسازی زون های زمین شناسی نشان می دهد که روش ماشین بردار پشتیبان طبقه بندی کننده نسبت به شبکه عصبی مصنوعی عملکرد مطلوب تری دارد. عملکرد مطلوب تر روش روش ماشین بردار پشتیبان نسبت به شبکه عصبی مصنوعی، با استفاده از دقت بالاتر این روش در مراحل آموزش و آزمایش و همچنین مقایسه میان مدل بلوکی طبقه بندی شده با برداشت های صورت گرفته از چال های انفجاری نشان داده شده است.
کلید واژگان: شبکه عصبی مصنوعی، ماشین بردار پشتیبان، کانسار مس پورفیری، جداسازی زون های کانی سازیDue to the relation of mineralization zones with grade variability in porphyry copper deposits, the preparation of the three-dimensional model of these zones is one of the pre-estimation steps in evaluation this type of deposits. The quality of this model has a significant impact on the quality of the grade estimates, the proper design of long-term extraction and ultimately reducing the problems between the mine and the processing plant. The usual way to prepare this model is to use a constrained modeling technique, which is a complex and time consuming process. One of the possible solutions for the preparation of these models is the use of unconstrained methods, such as intelligent methods. This paper attempts to study the performance of artificial neural network and support vector machine in the separation of mineralization zones (including leached, hypogene and supergene zones) in Miduk copper deposit. The northing co-ordinate, easting co-ordinate and height of the samples are used as input variables, and the observed mineralization zones in them are used as the output variable. Investigating the results of these intelligent algorithms in the separation of geological zones shows that the support vector machine classifier has a better performance than the artificial neural network. The better performance of the support vector machine method is shown by 1) the higher accuracy of this method in the training and testing stages and 2) the comparison between the block model with the grade control observations.
Keywords: Artificial neural networks, Support Vector Machine, Porphyry copper deposit, Separation of geological zones -
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the distribution of hydrothermally altered rocks in the Kerman Cenozoic magmatic arc (KCMA), Iran. The study area comprises main porphyry copper deposits such as Meiduk and Chahfiroozeh. Collecting reference spectra was considered after pre-processing of ASTER VNIR/SWIR images. Three types of reference spectra including image, USGS library, and field samples spectra were used in the SAM algorithm. Ground truthing and laboratory studies including thin section studies, XRD analysis, and VNIR-SWIR reflectance spectroscopy were utilized to verify the results. The accuracy of SAM classification was numerically calculated using a confusion matrix. The best accuracy of 74.01% and a kappa coefficient of 0.65 were achieved using the SAM method using field samples spectra as the reference. The SAM results were also validated with the mixture tuned matched filtering (MTMF) method. Field investigations showed that more than 90% of the known copper mineralization occurred within the enhanced alteration areas.Keywords: Spectral Angle Mapper, ASTER, Hydrothermal Alteration, Porphyry Copper Deposit, Kerman Cenozoic Magmatic Arc
-
International Journal of Mining & Geo-Engineering, Volume:46 Issue: 1, Winter and Spring 2012, PP 67 -80Due to substantial effect of classification of resource models on future mine planning, one should come with an accurate method of estimation to guarantee that the minimum error is acquired in the estimation process. The known world class Cu-Mo deposit, Sarcheshmeh Porphyry deposit (central Iran) selected as the study area. The Hypogene zone of the deposit was chosen as the space in which estimation processes should be done. The mean value of Molybdenum and Copper extracted from the top part of this zone, where sampling operations have been done on a dense grid. The correlation coefficient of 0.45 allowed going through the process of interpolation. It was shown that taking account Cu as an auxiliary variable the interpolation process, the estimation had been improved. Simple Cokriging interpolation technique is applied and it was proved that using Cu, with mean value of 0.61 percent, as secondary variable will decrease the estimation variance of Mo interpolation which has the mean value of 0.022 percent. The chief influence of this reduction appeared when the resource should be classified. Only 1% decrease was obtained when Cu used as secondary variable, but in an industrial aspect it can be of great importance as a high number of voxels in “Indicated” class changed into “Measured” one. This led to 133 Mt more Mo-ore that were added to the previous “Measured” class blocks. Also, the transition zones where the changes in class of cells have occurred are identified; these zones are mainly the places where Mo has fewer samples than Cu.Keywords: Simple Co, Kriging, Secondary Variable, Estimation Variance, Porphyry Copper Deposit, Resource Classification
-
Due to substantial effect of classification of resource models on future mine planning, one should come with an accurate method of estimation to guarantee that the minimum error is acquired in the estimation process. The known world class Cu-Mo deposit, Sarcheshmeh Porphyry deposit (central Iran) selected as the study area. The Hypogene zone of the deposit was chosen as the space in which estimation processes should be done. The mean value of Molybdenum and Copper extracted from the top part of this zone, where sampling operations have been done on a dense grid. The correlation coefficient of 0.45 allowed going through the process of interpolation. It was shown that taking account Cu as an auxiliary variable the interpolation process, the estimation had been improved. Simple Cokriging interpolation technique is applied and it was proved that using Cu, with mean value of 0.61 percent, as secondary variable will decrease the estimation variance of Mo interpolation which has the mean value of 0.022 percent. The chief influence of this reduction appeared when the resource should be classified. Only 1% decrease was obtained when Cu used as secondary variable, but in an industrial aspect it can be of great importance as a high number of voxels in “Indicated” class changed into “Measured” one. This led to 133 Mt more Mo-ore that were added to the previous “Measured” class blocks. Also, the transition zones where the changes in class of cells have occurred are identified; these zones are mainly the places where Mo has fewer samples than Cu.Keywords: Resource Classification, Porphyry Copper Deposit, Simple Co, Kriging, Secondary Variable, Estimation Variance
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.