به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت

جستجوی مقالات مرتبط با کلیدواژه « cad system » در نشریات گروه « پزشکی »

  • Hedaiat Moradpoor, Pourya Gorji, Fatemeh Ghorbani, Mohsen Safaei *
    Background

     This study aimed to determine the effect of multimedia-based and traditional teaching methods on the quality of dental student preparation by evaluating its smoothness, occlusal reduction, and the presence of undercut in the pre-clinic period.

    Methods

     This study was conducted on 60 pre-clinical dental students, who were divided into two groups of A and B. Group A was trained through Multimedia-based teaching methods, including PowerPoint, instructor demonstration, and procedural videos, and group B was trained by traditional education methods, which only included instructor demonstration. The computer-aided design (CAD) system was used to evaluate the preparation factors of smoothness, presence of undercuts, and occlusal reduction on the second premolar and first molar teeth.

    Results

     A significant difference was found between the frequency of smoothness in two education groups for teeth 5 and 6 (P = 0.026, P = 0.022). However, there was no significant difference between the frequency distribution of occlusal reduction in the two education groups (P = 0.383 and 0.168, for teeth 5 and 6, respectively) and was no significant difference between the undercut frequency in the two education groups (P = 0.365 and 0.078 for teeth 5 and 6, respectively).

    Conclusions

     Based on the results, multimedia-based education can effectively promote two challenging preparation factors, including occlusal reduction and smoothness among pre-clinical students.

    Keywords: Teaching Methods, Undercut, CAD System, Single Crown}
  • نورالله علیزاده نوروزبولاغی، یعقوب پوراسد*
    زمینه و هدف

    سرطان پستان مهم ترین و رایج ترین بیماری در بین زنان است که دومین میزان مرگ و میر را بعد از سرطان ریه به خود اختصاص داده است. ماموگرافی دیجیتال تصویر گرفته شده با استفاده از اشعه x برای تجزیه و تحلیل، تفسیر و تشخیص می باشد. تشخیص خودکار سرطان پستان در تصاویر ماموگرافی یک وظیفه چالش برانگیز در بین سیستم های تشخیص به کمک کامپیوتر(CAD) می باشد.

    روش کار

    در این مقاله یک راهکار برای تشخیص اتوماتیک سرطان پستان ارایه شده است. راهکار ارایه شده شامل 3 مرحله اصلی استخراج ناحیه پستان، حذف عضله پکتورال و طبقه بندی ویژگی های استخراج شده به دو دسته سرطانی و غیر سرطانی می باشد.

    یافته ها

    برای قطعه بندی از روش آستانه گذاری اتسو و سپس حذف عضله پکتورال با استفاده از انتخاب پیکسل دانه و الگوریتم رشد ناحیه میسر شده است. در مرحله بعدی ماتریس هم وقوعی خاکستری تصویر (GLCM)که توصیف کننده بافت تصویر است ایجاد شده و 16 ویژگی از آن استخراج می شود. در نهایت طبقه بندی های مختلفی برای تفکیک ناحیه پستان به بافت های نرمال و سرطانی، آموزش داده می شوند. در نتایج به دست آمده نرخ تشخیص صحیح 100 درصد برای شبکه عصبی و3/96 درصد برای طبقه بندهای درخت تصمیم گیری (C5.0,CHAID) بدست آمده است.

    نتیجه گیری:

     اعتبار سنجی راهکار ارایه شده در این مقاله با استفاده از داده های پایگاه mini-MIAS انجام شده است و نتایج با کار های قبلی انجام شده مقایسه شده است که نشان می دهد راهکار ارایه شده می تواند با اطمینان برای تشخیص سرطان پستان اعمال شود.

    کلید واژگان: سیتم CAD, سرطان پستان, قطعه بندی, استخراج ویژگی, شبکه عصبی مصنوعی, درخت تصمیم گیری}
    Norollah Alizadeh, Yaghoub Pourasad*
    Background

    Breast cancer is the most common type of cancer and the second leading cause of cancer death among American women. In Iran, the rate of breast cancer is lower than in industrialized and western countries, but with the growing trend, it is predicted that breast cancer will become one of the most common cancers in the country in the future. Mammography is currently one of the most effective and popular methods for screening and diagnosing breast cancer. Breast cancer is the primary and most common disease found in women which causes second highest rate of death after lung cancer. The digital mammogram is the X-ray of breast captured for the analysis, interpretation, and diagnosis. Automatic detection of breast cancer in mammograms is a challenging task in Computer Aided Diagnosis (CAD) techniques. This article aims to provide an automated computer diagnostic system to help diagnose early breast cancer. First, breast cancer and the survival statistics of patients with it, breast imaging techniques, and the presence of symptoms that are present in the images are signs of the disease. In the following, by introducing important and efficient methods in designing automatic diagnostic systems and its structure in order to distinguish cancerous images from non-cancerous breasts, the results obtained from this research and validations have been presented.

    Methods

    Breast cancer, one of the most common cancers in women, has a high mortality rate. Providing a medical assistance system for early detection of abnormalities associated with this cancer will greatly assist pathologists in identifying the causes of the disease and increase performance and accuracy in diagnosis. Studying the background of research in this field to better understand the problem and how to design this system in different ways gives us a more accurate view of this issue and also defines the design challenges of such a system. The results obtained by the methods presented in this paper are abbreviated as BMD_ML. A total of 64 mammograms, 23 cancer images containing benign and malignant masses, and 41 non-cancerous images were used to evaluate the methods used in this paper, and the results were obtained from the inputs of these images. A combination of digital image processing methods, random statistics and machine learning methods is used to perform the pre-processing, segmentation and extraction of ROI, feature extraction and classification at the lowest error rate. CAD is used in mammography screening. Mammography screening is used to detect early breast cancer. The CAD system helps diagnose lesions and classify benign and malignant tumors. This system is mostly used in the United States and the Netherlands. The first CAD system for mammography was developed during a research project at the University of Chicago. CAD systems, despite their high sensitivity, have very few features; This makes the benefits of using CAD unclear. In this report we present a methodology for breast cancer detection in digital mammograms. Proposed methodology consists of three major steps like segmentation of breast region, removal of pectoral muscle and classification of breast muscle into cancerous and normal tissues.

    Results

    This article aims to provide an automated computer diagnostic system to help diagnose early breast cancer. First, breast cancer and the survival statistics of patients with it, breast imaging techniques, and the presence of symptoms that are present in the images are signs of the disease. Then, important and efficient methods in designing automatic diagnostic systems and its structure are introduced and the work done in the past is examined by researchers active in this field. Finally, the techniques used in this paper are presented in order to distinguish between cancerous and non-cancerous breast cancer images. Segmentation of breast muscle was performed by employing Otsus segmentation technique, afterwards removal of pectoral muscle is carried out by seed selection and region growing technique. In next step, Gray Level Co-occurrence Matrices (GLCM) was created form which several features were extracted. At the end, several classifiers were trained to classify breast region into normal and cancerous tissues. The proposed classifier reports classification accuracy of 100 % for ANN and 96.3 % for decision tree algorithms (C5.0 and CHAID). Proposed methodology was validated on Mini-MIAS database and results were compared with previously proposed techniques, which shows that proposed technique can be reliably apply for breast cancer detection. Classification includes the final stage of designing such a system. Machine learning techniques have good performance for classifying tissue features obtained from mammograms. Machine learning is generally divided into two categories, supervised and uncontrolled. Learning without supervision requires a large amount of data to train the network. The classification methods used in this dissertation are one of the supervised methods, so that when creating a feature vector matrix, a column is assigned to whether the data is cancerous or non-cancerous. This method both speeds up learning and compares classified data with the predetermined target value when testing them. In this paper, several machine learning methods will be used to classify methods for classifying and comparing diagnostic accuracy. In this paper, classifications are performed in SPSS modeler software.

    Conclusion

    Numerous methods for extracting features were provided in the Overview of Features Extraction section. The solution presented in this article is to use a GLCM matrix. The matrix of gray surfaces always gives rise to different combinations of the brightness of the pixels in the image. CAD systems, despite their high sensitivity, have very few features; This makes the benefits of using CAD unclear. It can concluded that CAD could not have a significant effect on cancer detection rates, but it would inadvertently increase the recall rate (ie, the FP rate); However, various studies have shown significant inconsistencies in recall effects. In the design of the CAD system, the partitioning and extraction of the feature are of special importance. It should be noted to what extent the extraction characteristics describe the segmented area. In the future, in order to increase the accuracy of classifications and commercialization of this system, flexible features can be extracted from the image, which in addition to the lack of overlap between the features can be very compatible with machine learning methods. It is also possible to classify between types of anomalies, and after diagnosing whether the image is cancerous or non-cancerous, the type of anomaly associated with it can be identified.

    Keywords: CAD system, Breast cancer, Segmentation, Feature extraction, ANN, Decision tree classifiers}
  • محمدپارسا حسینی، حمید سلطانیان زاده، شهرام اخلاق پور، علی جلالی، مهرداد بخشایش کرم
    زمینه و هدف
    بیماری های ریوی و در راس آن سرطان ریه از شایع ترین و خطرناک ترین بیماری هایی هستند که روزانه افراد زیادی را به کام مرگ می کشانند. در این مقاله یک سیستم کمک تشخیصی مکانیزه جهت شناسایی ندول های ریوی به عنوان یکی از علایم اصلی بیماری های ریه ارایه خواهد شد.
    روش بررسی
    در یک کارآزمایی بالینی 25 بیمار ریوی مراجعه کننده به بیمارستان مسیح دانشوری تهران که در تصاویر HRCT آن ها ندول ریوی مشاهده گردید به طور تصادفی به دو گروه مورد با جمعیت پانزده (9 زن و شش مرد با میانگین سنی 63/5±43 سال) و گروه ناظر با جمعیت ده (شش زن و چهار مرد با میانگین سنی 91/4±39 سال) تقسیم شدند. با اعمال روش های پردازش و تحلیل تصاویر پزشکی و استفاده از الگوریتم های شناسایی آماری الگو سیستمی مکانیزه جهت شناسایی خودکار ندول ریوی ارایه گردید.
    یافته ها
    به وسیله روش های بخش بندی تصاویر پزشکی نسج اصلی ریه ها از بقیه تصاویر دو بعدی جدا شدند. در مرحله بعد موارد مشکوک شامل رگ، برونش، ندول و غیره به صورت رنگی برچسب گرفتند. سپس ویژگی های مشخصه ندول ها به دست آمدند. در نهایت جهت کلاسه بندی با استفاده از شبکه عصبی مصنوعی ندول های موجود در تصویر از بقیه موارد تفکیک و مشخص گردیدند.
    نتیجه گیری
    با توجه به پیچیدگی و ساختارهای متنوع ندول ها و تعداد زیاد تصاویر سی تی مربوط به کات های مختلف ریه، پیدا کردن ندول ریوی از میان موارد مشکوک کاری دشوار، زمان بر و با احتمال خطای انسانی برای پزشکان متخصص می باشد. خروجی سیستم پیشنهادی به خوبی (05/0P<) ندول ریوی را از موارد مشکوک آشکار ساخته است.
    کلید واژگان: سیستم کمک تشخیص کامپیوتری, تصاویر سی تی اسکن, شناسایی نودل ریوی, پردازش و تحلیل تصاویر پزشکی, شناسایی آماری الگو}
    Mohammad Parsa Hosseini, Hamid Soltanian-Zadeh, Shahram Akhlaghpoor, Ali Jalali, Mehrdad Bakhshayesh Karam
    Background
    Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest computed tomography (CT) images.
    Methods
    Twenty-five adult patients with lung nodules in their CT scan images presented to the National Research Institute of Tuberculosis and Lung Disease, Masih Daneshvari Hospital, Tehran, Iran in 2011-2012 were enrolled in the study. The patients were randomly assigned into two experimental (9 female, 6 male, mean age 43±5.63 yrs) and control (6 female, 4 male, mean age 39±4.91 yrs) groups. A fully-automatic method was developed for detecting lung nodules by employing medical image processing and analysis and statistical pattern recognition algorithms.
    Results
    Using segmentation methods, the lung parenchyma was extracted from 2-D CT images. Then, candidate regions were labeled in pseudo-color images. In the next step, some features of lung nodules were extracted. Finally, an artificial feed forward neural network was used for classification of nodules.
    Conclusion
    Considering the complexity and different shapes of lung nodules and large number of CT images to evaluate, finding lung nodules are difficult and time consuming for physicians and include human error. Experimental results showed the accuracy of the proposed method to be appropriate (P<0.05) for lung nodule detection.
    Keywords: CAD system, CT scan, nodule detection, image processing, medical image analysis, statistical attern recognition}
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال