sox2 protein
در نشریات گروه پزشکی-
Background
Sox2 (SRY box2) is an essential transcription factor that plays a vital role in spermatogenesis and regulates the genes in this process. Sox2 is important for pluripotency, self-renewal, and even spermatogonial stem cell differentiation. This gene is found in pluripotent and specialized cells, and it is involved in their biological activities.
MethodsProtein-protein interaction (PPI) network analysis was performed during spermatogenesis using NCBI, STRING, and Cytoscape databases. Then, after isolating spermatogonial stem cells from 6 C57BL/6 mice, mouse embryonic stem cells and ES-like cells were prepared. In the following, Sox2 expression was examined in differentiated and undifferentiated spermatogonia by immunohistochemistry (IMH), immunocytochemistry (ICC), and Fluidigm PCR (polymerase chain reaction). Finally, the results were compared using the Kruskal-Wallis and Dunn tests at the significance level of p<0.05.
ResultsThe results of this experiment showed that contrary to expectations, Sox2 has cytoplasmic expression in undifferentiated cells and nuclear expression in differentiated cells in in vitro conditions. In addition, the expression of Sox2 increased during differentiation. Fluidigm PCR showed a significantly higher expression of Sox2 (p<0.05) in differentiated compared to undifferentiated spermatogonia. Sox2 has an interaction with other genes during spermatogenesis such as Oct4, Nanog, Klf4, Stra8, Smad1, Tcf3, and Osm.
ConclusionSox2, which is known as a pluripotency marker, has a vital role in spermatogenesis and could be a differential marker. Sox2 has strong connections with other genes such as Oct4, Nanog, Klf4, Tcf3, Osm, Stra8, Lim2, Smad1, Gdnf, and Kit.
Keywords: Adult germline stem cells, Cell differentiation, Seminiferous tubules, Sox2 protein, Transcription factors -
Introduction
The administration of 3,4-methylenedioxymethamphetamine (MDMA) or ecstasy causes memory impairment, whereas neurogenesis improves memory and learning. Hence, this study evaluated the effects of MDMA on neurogenesis in the hippocampus of male rats.
MethodsAdult male Wistar rats received Intraperitoneal (IP) injections of MDMA (10 mg/kg). We assessed nestin, sex-determining region Y-box 2 (Sox2), and NeuroD expressions according to the immunohistochemistry analyses.
ResultsMDMA reduced the expressions of nestin, Sox2, and NeuroD compared with the control groups. The reduction in NeuroD expression was age-related.
ConclusionMDMA possibly has negative effects on neurogenesis, which specifically results from impaired survival of newborn cells.
Keywords: N-Methyl-3, 4-methylenedioxyamphetamine, Hippocampus, Nestin, Sox2 Protein, NeuroD Protein -
BackgroundDerivation of induced pluripotent stem cells (iPSCs) from various adult somatic cells through over-expression of pluripotent genes could allow for the unlimited autologous supply in regenerative medicine. On the other hand the generation of various progenitors from bone-marrow mesenchymal stem cells (MSCs) is justly well established.ObjectiveIn this study we compared the expression level of pluripotent genes oct4, c-myc, sox-2, nanog, klf4 and lin28 in iPSCs and MSCs derived from bone marrow. Also the potential of osteogenesis of iPSCs and bone-marrow MSCs were compared.MethodsWe analyzed the expression level of oct4, sox-2, c-myc, klf4, nanog and lin28 genes in human MSCs derived from iPSCs and MSCs by cell culture and real-time PCR. Also the expression level of osteocalcin and osteopontin in both groups were evaluated.ResultsWe found that the expression of osteogenic markers in differentiated iPSCs to osteoblast were higher than bone-marrow MSCs. While the levels of pluripotency genes oct4, c-myc and klf4 in iPSCs were significantly (pConclusionIt seems that the higher expression of osteopontin and osteocalcin in MSCs compared to iPSCs may be due to other factors (besides pluripotency) required for differentiation of stem cells to osteoblast.Keywords: Induced pluripotent stem cells, Mesenchymal stromal cells, Gene expression profiling, Osteogenesis, Xite transcript, mouse [Supplementary Concept], Genes, myc, sox2 protein, xenopus [Supplementary Concept]
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.