به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

tissue engineering

در نشریات گروه پزشکی
  • Niloufar Molayeeasl, Mahmood Araghi, Sayed Habib Kazemi, Seyed Hojat Hosseini, Samad Nadri *
    Objective (s)

    Traditional wound dressings primarily promote passive wound healing and infrequently promote active wound healing by influencing skin cell. It is known that electrical stimulation (ES) can control the actions of skin cells. In the present study, the conductive electrospun PU/rGO was designed and fabricated and its qualities as skin wound dressings in animal models were examined. 

    Materials and Methods

    In this study, nanocomposite PU (polyurethane)/rGO (reduce graphene oxide) was synthesized using an electrospinning process, investigated via scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), water contact angle, degradation studies, electrochemical impedance spectroscopy (EIS), bactericidal efficacy, hemolysis and MTT assay.  Then, the scaffolds were grafted in full-thickness wounds of animal rats and evaluated by wound closure and histological.

    Results

    The results showed that the PU/rGO scaffold exhibited antibacterial activity in comparison with PU scaffold and viability showed a notable improvement in cell promotion. In the histopathological analysis, improved dermis development and collagen deposition at the healed wound area of the PU/rGO scaffold with electrical stimulation in comparison to other groups were observed. 

    Conclusion

    A PU/rGO scaffold with electrical stimulation could be an appropriate option for skin tissue engineering and wound healing.

    Keywords: Composite, Electrical Stimulation, Scaffold, Tissue Engineering, Wound Healing
  • Narges Fereydouni, Mohammadebrahim ‎ Astaneh, Morteza Seifalah-Zade‎, Alireza Hashemzadeh
    Background

    This review represents the first comprehensive compilation of data on Iranian commercial, service, and research entities in the field of tissue engineering up to 2024.

    Methods

    Through an extensive search of official websites, 56 companies were identified: 29 commercial enterprises, 17 service providers, and 10 research institutions. The majority (64%) of these companies are headquartered in Tehran, with many established post-2004.

    Results

    Biomaterials account for half of the product portfolio, with 38% of ongoing research focused on this area. Although cell-based products currently make up only 12% of offerings, they are the subject of 38% of current research, indicating significant potential for future growth.

    Conclusion

    This study provides a detailed overview of the development and future prospects of Iran's tissue engineering sector. The key conclusion emphasizes the need for an expanded focus on cell-based therapies and the establishment of stronger regulatory frameworks to facilitate the commercialization of innovative products. The review identifies key research gaps and proposes directions for future study, utilizing a descriptive methodology with in-depth data analysis and theoretical discussion.

    Keywords: Tissue Engineering, Commercial, Service, Research, Company
  • Naimeh Mahheidari, Morteza Alizadeh, Mohammad Kamalabadi Farahani, Zohreh Arabpour, Nariman Rezaei Kolarijani, Ali R. Djalilian, Majid Salehi *
    Objective (s)

    For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca2+) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.

    Materials and Methods

    All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively. Besides, the wound healing potential of prepared hydrogels was evaluated on the rat models with full-thickness skin excision. To further investigation, TGF β1, IGF-I, COL1, ACT-A (alfa-SMA), and GAPDH expression levels were also reported by RT-PCR. 

    Results

    Water absorption and weight loss properties were compared between different crosslinker agents, and the most nontoxic crosslinker concentration was determined. We have shown that GA (20 µl/ml) and Ca2+ (50 or 75 mM) enhanced the physical stability of Alg-CMC hydrogel, and they are nontoxic and suitable crosslinkers for wound dressing applications. Although in vivo assessments indicated that the GA (20 µl/ml) had a cytotoxic effect on tissue repair, Ca2+ (75 mM) boosted the wound healing process. Further, RT-PCR results revealed that TGF β1, IGF-I, COL1, ACT-A (alfa-SMA), and GAPDH expression levels were increased in GA (20 µl/ml). Moreover, this trend is the opposite in the Ca2+ (75 mM) treatment groups.

    Conclusion

    This research shows that Ca2+ (75 mM) boosts tissue regeneration and wound healing process.

    Keywords: Alginate, Cacl2, Carboxymethyl Cellulose, Glutaraldehyde, Tissue Engineering
  • فرناز تاج بخش، سمیه توانا، محمد کاظمی آشتیانی، نعیمه سادات ابطحی، لیلا سادات طاهائی، اشرف معینی، روح الله فتحی*
    مقدمه

    انجماد بافت تخمدان بهترین روش حفظ باروری برای دختران نابالغ و زنان مبتلا به سرطان است. اما به دلیل احتمال برگشت سلول های بدخیم بعد از پیوند بافت، جداسازی فولیکول از بافت تخمدان منجمد - ذوب شده این افراد برای بلوغ آزمایشگاهی یا ساخت تخمدان مصنوعی مورد توجه است. هدف از این مطالعه، ارزیابی تاثیر رنگ حیاتی نوترال رد (Neutral red; NR) و آنزیم کلاژناز در جداسازی موفق فولیکول زنده از قطعات بافت تخمدان انسانی منجمد شده است.

    روش بررسی

    در این مطالعه تجربی- مداخله ای، دو گروه اصلی وجود دارد: گروه حاوی رنگ حیاتی NR و گروه بدون NR. قطعات خردشده (0/5×0/5میلی متر) از بافت تخمدان منجمد شیشه ای - ذوب شده 10 فرد تراجنسی، برای هضم آنزیمی به دو فالکون حاوی HTCM و آنزیم کلاژنازIA (mg/ml1) منتقل شد. به یکی از فالکون ها NR اضافه شد. سپس فولیکول ها با روش مکانیکی جداسازی شدند. فولیکول های جداسازی شده از نظر ریخت شناسی و اندازه بررسی شدند. میزان زنده مانی و سلامت فولیکول ها با رنگ فلوئورسنت Calcein-AM و Ethidium homodimer-I ارزیابی شد. داده ها با روش t-test توسط نرم افزار GraphPad Prism  مورد ارزیابی قرار گرفت.

    نتایج

    تعداد فولیکول های جداسازی شده با NR (25/02± 46/50) بیشتر از زمانی است که از NR برای جداسازی استفاده نشد (5/58± 6/6) (0/0001 > P). هم چنین با توجه به ارزیابی های ریخت شناسی، بیشتر فولیکول های جداسازی شده از قشر تخمدان افراد تراجنسی از نوع فولیکول های بدوی (77/4 درصد) و اولیه (21/12 درصد) بودند و تنها تعداد کمی فولیکول های ثانویه (1/4 درصد) در بافت تخمدان این افراد وجود داشت. رنگ آمیزی Live/dead زنده بودن فولیکول ها را بانمایش رنگ سبز تایید کرد.

    نتیجه گیری

    براساس نتایج استفاده همزمان از کلاژناز IA و رنگ حیاتی Neutral red نقش مهمی در سهولت جداسازی فولیکول از بافت تخمدان متراکم انسان دارد.

    کلید واژگان: جداسازی فولیکول انسانی، Neutral Red، انجماد، مهندسی بافت، رنگ آمیزی Live، Dead
    Farnaz Tajbakhsh, Somayeh Tavana, Mohammad Kazemi Ashtiani, Naeimeh Sadat Abtahi, Leila Sadat Tahaei, Ashraf Moini, Rouhollah Fathi*
    Introduction

    Ovarian tissue freezing is the most effective method to maintain fertility for immature girls and women diagnosed with cancer. Nonetheless, because of the chance that malignant cells might reappearing following tissue transplantation, it is crucial to isolate the follicles from the frozen-thawed ovarian tissue of these individuals and employ them in the process of in vitro maturation process or artificial ovarian framework. This study aimed to assess the application of neutral red (NR) vital dye alongside collagenase IA for effectively isolating viable follicles from the vitrified human ovarian tissue samples.

    Methods

    Two categories existed: the category with NR and the group without NR. Chopped (0.5×0.5 mm) strips of vitrified-warmed ovarian tissue from 10 transsexual individuals were placed into two falcon tubes with HTCM and Collagenase IA (1mg/ml). Neutral red (NR) was introduced to one of the falcons. Follicles were then isolated mechanically. The morphology, size, and viability of the follicles were assessed. The condition of the follicles was evaluated using fluorescent staining methods involving Calcein-AM and Ethidium homodimer-I. The t-test method was used to evaluate the data.

    Results

    The number of isolated follicles with Neutral Red (46.50±25/02) exceeded those without NR (6.6±5.58; P < 0/0001). Additionally, according to the morphological studies, a majority of the isolated follicles from the transsexual ovarian cortex were primordial (77.4%), and primary (21.12%) follicles, with only a small number of secondary follicles (1.4%) identified in these tissues. Live/dead staining verified the viability of isolated follicles by displaying a green hue.

    Conclusion

    The finding indicates that combining collagenase I with the vital dye Neutral red significantly facilitates the of follicles from dense human ovarian tissue.

    Keywords: Human Follicle Isolation, Neutral Red, Cryopreservation, Tissue Engineering, Live, Dead Staining
  • یاسین قبول، مهشید رغبتی، ناصر مهدوی شهری، امین توسلی*
    Yasin Ghabool, Mahshid Reghbati, Nasser Mahdavi Shahri, Amin Tavassoli*
    Background & Objectives

    This study aimed to construct a decellularized mouse spleen scaffold and evaluate its cellular compatibility in vitro using murine bone marrow-derived mesenchymal stem cells (BM-MSCs).

    Materials & Methods

    A combination of physical, chemical, and enzymatic treatments was employed for mouse spleen decellularization. These included multiple freeze-thaw cycles, the ionic detergent sodium dodecyl sulfate (SDS), and enzymatic trypsin. Histological and scanning electron microscopy analyses were conducted up to 7 days post-culture to assess the impact of decellularization and cellular adaptation to the spleen scaffolds.

    Results

    Histological studies revealed the attachment and penetration of BM-MSCs into the scaffolds on days 5-7 following cell seeding. Furthermore, cell migration into the scaffold was observed 5 days after the seeding process.

    Conclusion

    The decellularization approach utilized in this study proved to be effective and biocompatible, supporting the preservation and proliferation of BM-MSCs. These findings indicate its potential for spleen tissue engineering applications.

    Keywords: Decellularization, Scaffold, Spleen Tissue, Extracellular Matrix, Mesenchymal Stem Cells, Tissue Engineering
  • لیلا رضاخانی، طیبه سادات طباطبایی، مرتضی علی زاده*
    زمینه

    مهندسی بافت استراتژی درمانی مهمی برای پزشکی حال و آینده جهان محسوب می شود.

    هدف

    اخیرا تحقیقات بیومتریال به سمت توسعه داربست های مفید و دارای عملکرد مفید برای پزشکی بازساختی هدایت شده است.

    روش ها

    در این مطالعه جستجوی مقالات با استفاده از کلید واژه های  chitin , chitosan,  tissue engineering به واسطه ی جستجوی علمی به طور مستقل در بانک های اطلاعاتی Web of Science, Pubmed, Scopus, Science Direct و Google scholar انجام شد و نهایتا  94 مقاله انتخاب و مورد بررسی قرار گرفت.

    یافته ها

    کیتوزان نامی کلی برای گروهی از ترکیبات کیتین استیل شده است. این پلیمر طبیعی از منابع تجدیدپذیر مانند صدف ها، سخت پوستان و ضایعات صنایع غذایی دریایی به دست می آید. داربست های کیتوزانی که ساختار متخلخلی دارند به راحتی با انجماد و خشک کردن محلول کیتوزانی ساخته می شوند. پلیمر فوق در مهندسی بافت استخوان، غضروف، عروق، پوست و سایر بافت ها کاربرد دارد و برای درمان بیماریهایی مانند سرطان و سیستم دارورسانی نیز قابل استفاده هستند. علاوه بر این، اثرات آنتی اکسیدانی و ضد میکروبی این ترکیب، استفاده ی گسترده تر از آن در پزشکی باز ساختی را موجب شده است.

    نتیجه گیری

    در این مقاله مروری به بررسی خصوصیات کلی کیتوزان و کاربردهای مختلف آن در مهندسی بافت پرداخته شده است.

    کلید واژگان: کیتین، کیتوزان، مهندسی بافت، پزشکی بازساختی
    Leila Rezakhani, Tayebeh Sadat Tabatabaei, Morteza Alizadeh*
    Background

    Tissue engineering is an important treatment strategy for the present and future medicine in the world.

    Objective

    Recently, biomaterial research has led to the development beneficial and useful scaffolds for regenerative medicine.

    Methods

     In this study, the search for articles using the keywords chitin, chitosan, tissue engineering was carried out through a scientific search independently in Web of Science, Pubmed, Scopus, Science Direct and Google Scholar databases, and finally 94 articles were selected and reviewed.

    Results

    Chitosan is a generic name for a group of chitin-acetyl compounds. This natural polymer is obtained from renewable sources such as oysters, crustaceans, and seafood waste. Chitosan scaffolds that have a porous structure are easily made by freezing and drying the chitosan solution. The polymer is used in the engineering of bone, cartilage, arteries, skin, and other tissues and can also be used to treat diseases such as cancer and the drug delivery system. In addition, the antioxidant and antimicrobial effects of this compound have led to its broader use in regenerative medicine.

    Conclusion

    This review article reviews the general properties of chitosan and its various applications in tissue engineering.

    Keywords: Chitin, Chitosan, Tissue Engineering, Regenerative Medicine
  • Nafiseh Baheiraei*

    Bone defects resulting from trauma, infection, fractures, and other factors present significant challenges that adversely affect organ function and lead to physiological damage. Tissue engineering offers a promising alternative to traditional and limited methods. In this study, we aimed to introduce a novel electrospun bone graft composed of beta-tricalcium phosphate (βTCP) combined with gelatin (Gel) and polycaprolactone (PCL) scaffolds, leveraging the favorable functional properties of bone-inducing biomaterials to enhance cell proliferation, biocompatibility, and signal transduction. We fabricated the composite scaffolds using the electrospinning technique to mimic the matrix fiber structure. The prepared scaffolds were thoroughly tested for their physicochemical properties and cytocompatibility. We conducted subcutaneous implantation in mice to evaluate the scaffolds' ability to induce angiogenesis. Compared to Gel-PCL scaffolds, human bone mesenchymal stem cells (hBMSs) cultured on Gel-PCL/βTCP scaffolds exhibited improved cell viability and adhesion. Histological evaluations confirmed the enhanced vascularization and good integration with the surrounding tissue in the βTCP containing samples following subcutaneous implantation. Introducing βTCP powder into the electrospinning solutions improved the biological and histological properties of our composite scaffold. Our findings suggest that βTCP-containing scaffolds could have beneficial effects on bone tissue engineering, and Gel-PCL/βTCP represents a promising scaffold for accelerating the angiogenesis of damaged bone tissue.

    Keywords: Tissue Engineering, Scaffold, Electrospinning, Gelatin, Polycaprolactone, Beta-Tricalcium Phosphate
  • Farzaneh Ahrari, Salehe Akhondian, Reza Shakiba, Afsaneh Tolooei, Armaghan Salehi, Maryam Valizadeh, Kosar Hosseini *
    Introduction

     Developing regenerative endodontic treatment (RET) is an exciting approach to managing immature permanent teeth with pulp necrosis. RET is usually performed in two clinical steps: disinfection (first step) and tissue engineering (second step). Recently, laser therapy has entered the field of RET. This study aimed to provide an overview of the literature that employed laser therapy for root regeneration.

    Methods

     A comprehensive search was performed on four databases, including PubMed, Web of Science, Scopus, and Google Scholar. The searched keywords were laser, regenerative endodontics, immature permanent teeth, and dental pulp necrosis, and related English-published articles were included up to October 2023.

    Results

     Thirteen studies utilized a laser for RET. In the first step of RET, both high-power and low level lasers (through photodynamic therapy [PDT]) may be applied for canal disinfection. In contrast, regenerative procedures in the second step of RET are just accelerated by low-power lasers (biostimulation). The literature does not support the benefit of laser-assisted irrigation in improving the clinical success of RET. There is some evidence that laser-assisted disinfection with a diode laser may provide comparable results to triple antibiotic paste in reducing bacterial counts in root canals while providing slightly better clinical and radiographic outcomes. PDT may be an effective and suitable adjunct to conventional disinfection methods in immature, necrotic teeth.

    Conclusion

     Low-power lasers may be beneficial tools for improving the results of regenerative endodontics through chemical disinfection in the first step (PDT) or by biostimulation in the second step of RET.

    Keywords: Disinfection, Laser, Pulp Necrosis, Regenerative Endodontics, Tissue Engineering
  • فرانک حسن پور، صابر زهری*، آرش عبدالملکی، اسدالله اسدی
    زمینه و هدف

    مهندسی بافت، با طراحی داربست های زیستی و با تقلید از محیط خارج سلولی، به رشد و تکثیر سلول ها کمک کرده و نقش کلیدی در جایگزینی و ترمیم بافت های آسیب دیده دارد. در سال های اخیر، افزودن نانوذرات همانند نقاط کوانتومی کربن به داربست های زیستی مورد توجه قرار گرفته است. در این پژوهش به سنتز داربست پلی کاپرولاکتون حاوی نقاط کوانتومی کربن و بررسی اثرات زیست سازگاری و محافظتی آن در شرایط تنش اکسیداتیو پرداخته شده است.

    روش کار

    نقاط کوانتومی کربن با استفاده از روش پیرو لیز سنتز شده و داربست های پلیمری حاوی نقاط کوانتومی کربن به روش الکتروریسی تهیه شدند. ویژگی های فیزیکی و شیمیایی داربست با میکروسکوپ الکترونی روبشی و طیف سنجی FTIR ارزیابی شد. زیست سازگاری داربست ها و خواص آنتی اکسیدانی آن ها با روش MTT سنجیده شد.

    یافته ها

    بررسی مورفولوژی و ساختار شیمیایی داربست، تخلخل مناسب داربست حاوی نقاط کوانتومی کربن را نشان داد. آزمون MTT به صورت قابل توجهی قابلیت زنده ماندن سلول های بنیادی را بر روی داربست های حاوی نقاط کوانتومی کربنی نشان داد. علاوه بر این، این داربست ها اثر محافظتی قابل توجهی در برابر استرس اکسیداتیو از خود نشان دادند.

    نتیجه گیری

    این مطالعه نشان داد که داربست پلی کاپرولاکتون حاوی نقاط کوانتومی کربن، با ویژگی های زیست سازگاری بالا و خواص آنتی اکسیدانی مناسب، بستر موثری برای مهندسی بافت و محافظت سلولی در شرایط تنش اکسیداتیو فراهم می آورد.

    کلید واژگان: آنتی اکسیدان، زیست سازگاری، داربست سنتزی، مهندسی بافت
    Faranak Hasanpour, Saber Zahri*, Arash Abdolmaleki, Asadolah Asadi
    Background

    Tissue engineering, by designing biological scaffolds and imitating the extracellular environment, helps the growth and proliferation of cells and plays a key role in replacing and repairing damaged tissues. In recent years, the addition of nanoparticles, such as carbon quantum dots, to biological scaffolds has received attention. In this research, the synthesis of polycaprolactone scaffolds containing carbon quantum dots and the investigation of biocompatibility effects and their protection have been discussed.

    Methods

    Carbon quantum dots were synthesized using the pyrolysis method, and polymer scaffolds containing carbon quantum dots were prepared by the electrospinning method. The physical and chemical properties of the scaffold were evaluated by scanning electron microscopy and FTIR spectroscopy. The scaffolds' biocompatibility and antioxidant properties were measured by the MTT method.

    Results

    Examination of the morphology and chemical showed the appropriate porosity of the scaffold containing carbon quantum dots. The MTT assay significantly enhanced stem cell viability on scaffolds incorporating carbon quantum dots. Furthermore, these scaffolds exhibited a significant protective effect against oxidative stress.

    Conclusion

    This study showed that the polycaprolactone scaffold containing carbon quantum dots, with high biocompatibility and suitable antioxidant properties, provides an effective substrate for tissue engineering and cell protection under oxidative stress conditions.

    Keywords: Antioxidant, Biocompatibility, Synthetic Scaffold, Tissue Engineering
  • عبدالرضا دیانی، محسن قیاسی*

    علی رغم پیشرفت های چشمگیر در پیشگیری، تشخیص و درمان بیماری های قلبی هنوز این بیماری به عنوان یکی از چالش های اصلی نظام سلامت جهانی محسوب می گردد. براساس آمار های سازمان جهانی بهداشت، بیماری های قلبی عروقی یکی از مهم ترین عوامل مرگ و میر در سراسر جهان به شمار می روند. پیش بینی می شود که در سال های آینده در نتیجه پیری جمعیت، شهرنشینی و تغییر سبک زندگی آمار مرگ و میر ناشی از بیماری های قلبی افزایش یابد. رویکردهای دارویی موجود تنها طول عمر بیماران را افزایش می دهد، اما ترمیمی در بافت قلبی ایجاد نمی نماید. در مراحل پیشرفته این بیماری ها به غیر از پیوند قلب، درمانی وجود ندارد. با این حال، پیوند به دلیل تعداد محدود اهدا کننده مناسب، عوارض و خطرات بعد از عمل مانند رد پیوند، نارسایی اولیه پیوند و عفونت های شایع بعد از پیوند قلب همیشه قابل اجرا نیست. سلول های بنیادی از زمان شناسایی تا به امروز امید فراوانی را در جهان بوجود آورده است. با افزایش تحقیقات بر روی سلول های بنیادی و سلول درمانی در چند دهه اخیر، محققین به این نتیجه رسیدند که استفاده از این رویکرد درمانی جدید می تواند موجب افزایش طول عمر و بهبود بیماران گردد. کشورهای مختلف در سال های اخیر میلیون ها دلار در زمینه کاربرد سلول های بنیادی برای درمان بیماری های مختلف هزینه کرده اند. سلول های بنیادی جنینی توانایی بسیار بالایی در تمایز دارند، اما کاربرد آن ها در پزشکی بازساختی با محدودیت های اخلاقی و مذهبی شدیدی مواجه است. شناسایی سلول های بنیادی پرتوان القایی انقلابی در زمینه پزشکی بازساختی ایجاد نمود. این سلول ها تمام قابلیت های سلول های بنیادی جنینی را دارا هستند و به راحتی می توانند به میوسیت های قلبی تمایز یابند. علاوه بر این اثرات پاراکراینی سلول های بنیادی پرتوان القایی و وزیکول ‎های خارج سلولی ترشح شده از این سلول ها در پزشکی بازساختی بسیار مورد توجه قرار گرفته است. در میان وزیکول های ترشحی خارج سلولی، توجه پژوهشگران به اگزوزوم ها بیش تر بوده است. اگزوزوم ها وزیکول هایی با اندازه 30 تا 100 نانومتر هستند که توپولوژی شبیه غشای پلاسمایی دارند و می توانند وارد سلول های هدف شده و محموله های خود را تحویل دهند. پچ های قلبی دستاوردیست نوین که از تلفیق مهندسی بافت و علوم سلولی بوجود آمده است و بمنظور بهبود آسیب های قلبی مورد استفاده قرار می گیرند. پچ های قلبی از یک داربست طبیعی و یا سنتزی با هدف حمایت و بازسازی از میوکارد قلب به دنبال آسیب، بر روی بافت قلب کاشته می شوند. رویکرد اصلی استفاده از پچ های قلبی حمایت فیزیکی از بافت آسیب دیده ی قلب است. امروزه ترکیب کاردیومیوسیت های مشتق از سلول های بنیادی پرتوان القایی به همراه مواد زیست سازگار و فاکتورهای رشد، پچ های قلبی ویژه ای را ایجاد کرده است که توانایی تحویل دقیق بسیاری از سلول ها و به حداقل رساندن تلفات سلولی در شرایط درون تنی را دارند. در این مقاله مروری تلاش شده است به بررسی جدیدترین پیشرفت ها در حوزه پزشکی بازساختی قلب از طریق استفاده از پچ های قلبی، سلول های بنیادی پرتوان القایی و اگزوزوم های مشتق از آن پرداخته شد؛ هم چنین مقاله ی حاضر سعی دارد به ارزیابی چالش های پیش روی پزشکی بازساختی قلب در استفاده از موارد ذکر شده جهت تخفیف و بهبود آسیب های وارد شده به بافت قلب بپردازد و نهایتا با ارائه یک تصویر کلی از چشم اندازهای جدید پیش روی پزشکی بازساختی قلب برای پژوهش های آینده الهام بخش باشد.

    کلید واژگان: سلول های بنیادی پرتوان القایی، پچ قلبی، اگزوزوم، مهندسی بافت، پزشکی بازساختی
    Abdolreza Dayani, Mohsen Ghiasi*

    Despite significant advances in the prevention, diagnosis, and treatment of cardiac diseases, this condition is still considered one of the major challenges facing the global healthcare system. According to the World Health Organization (WHO) statistics, cardiovascular diseases (CVD) are among the leading causes of mortality worldwide. It is predicted that in the future, due to population aging, urbanization, and lifestyle changes, the mortality rate from cardiac diseases will increase. Current pharmacological approaches only extend the lifespan of patients without providing cardiac tissue repair. In the advanced stages of these diseases, apart from heart transplantation, there is no curative treatment available. However, due to limited suitable donors and post-operative risks and complications such as graft rejection, primary graft failure, and common infections after heart transplant, transplantation is not always feasible. Stem cells have created a wide range of hope in the world since their discovery. With increased research on stem cells and cell therapy in recent decades, researchers have found that utilizing this innovative therapeutic approach can increase lifespan and improve patient outcomes. Various countries have invested millions of dollars in the application of stem cells for treating various diseases in recent years. Embryonic stem cells (ESCs) have great differentiation potential, but their medical application faces severe ethical and religious constraints. The identification of potent induced pluripotent stem cells has revolutionized regenerative medicine. These cells possess all the capabilities of embryonic stem cells and can easily differentiate into cardiac myocytes. Furthermore, the paracrine effects of induced pluripotent stem cells (iPSCs) and extracellular vesicles (EVs) secreted from these cells in regenerative medicine have garnered significant attention. Among extracellular secretory vesicles, researchers have focused more on exosomes. Exosomes are vesicles ranging from 30 to 100 nanometers that have a plasma membrane-like topology and can enter target cells and deliver their cargo. Cardiac patches are a novel achievement resulting from the integration of tissue engineering and cell sciences and are used to improve cardiac injuries. Cardiac patches consist of a natural or synthetic scaffold designed to support and restore myocardial tissue following injury, and they are implanted into the heart tissue. The primary approach to using cardiac patches is to provide physical support to damaged heart tissue. Nowadays, the combination of cardiomyocytes derived from potent induced pluripotent stem cells along with biocompatible materials and growth factors has created specialized cardiac patches capable of precise delivery of many cells and minimizing cellular damages in vivo conditions. This review article aims to explore the latest advances in cardiac regenerative medicine through the use of cardiac patches, induced pluripotent stem cells, and exosomes derived from them; as well as to assess the challenges ahead in cardiac regenerative medicine using the mentioned items to alleviate and improve tissue damage to the heart, and ultimately provide an overview of new perspectives for future research in cardiac regenerative medicine.

    Keywords: Induced Pluripotent Stem Cells, Cardiac Patches, Exosomes, Tissue Engineering, Regenerative Medicine
  • Neda Farazi, Arash Abdolmaleki, Asadollah Asadi*, Saber Zahri
    Background

    Tissue engineering is a multidisciplinary and interdisciplinary topic that involves the development of biological implants for tissue regeneration intending to improve or enhance tissue or organ function.

    Objectives

    This study aimed to evaluate the mechanical and histological properties of decellularized rat pancreas scaffolds, as well as to investigate the viability of adipose mesenchymal stem cells (MSCs) on the said scaffold for use in regenerative medicine and tissue engineering.

    Methods

    This is an experimental study that was performed in the research laboratory of Mohaghegh Ardabili University. To prepare the scaffold, male Wistar rats were anesthetized with carbon dioxide. After dissecting the mice, their pancreases were isolated and immediately transferred to a phosphate-buffered saline (PBS) solution to prepare them for decellularization. The decellularized scaffolds were evaluated histologically and mechanically. After decellularization, lipid MSCs were injected into de-cell scaffolds in the third passage.

    Results

    Examination of the results of histological evaluations showed that scaffolding was completely decellularized. These results were confirmed by Mason trichrome and Dapi staining (coloring). Specialized tissue assessments by electron microscopy showed that the collagen and elastin strands were relatively conserved in the extracellular matrix (ECM).

    Conclusions

    In general, the result of this research demonstrates the successful decellularization of pancreatic tissue, effective preservation of the ECM of the desired tissue, and the viability of the MSCs on the scaffold resulting from the decellularization of the tissue.

    Keywords: Mesenchymal Stem Cell, Decellularized Scaffold, Pancreas, Tissue Engineering, Regenerative Medicine
  • Mohammad Mahdi Taherian, Pourya Abdoos, Mohammadhossein Taherian, Fatemeh Ghorbanian, Zohreh Saltanatpour, Akram Alizadeh *

    Cryopreservation is a critical enabling technology in stem cell-based therapies, tissue engineering and regenerative medicine that provides stable and long-term storage of organelles, cells, tissues, or any other biological constructs. However, this technology faces challenges, including decreasing cell survival rates and using dimethyl sulfoxide (DMSO), a cytotoxic agent. Moreover, cryopreserving methods are time-consuming and expensive. Various cells and tissues, due to some reasons, such as different metabolic and functional characteristics, respond differentially to the cryopreservation protocols which cause diversities in viability after thawing. This review discusses methods currently used for optimized cryopreservation of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adipose-derived stem cells (ASCs), and their advantages and disadvantages. Also, here we discuss about changing the DMSO, freezing rate, pre-freeze storage, and storage temperature that can improve the cryopreservation outcomes. Further studies are still needed to find better cryopreservation methods for stem cells.

    Keywords: Cryopreservation, Regenerative Medicine, Tissue Engineering, Stem Cells, Hematopoietic Stem Cells, Mesenchymal Stem Cells
  • Alireza Noori*, Seyed Jamal Ashrafi, Zahra Mohammadi, Javad Mohammadnejad Arough, Abdoreza Sheykhmehdi Mesgar
    Introduction

    Bone tissue engineering is one of the emerging strategies that has been developed to restore the bone of the damaged area without provoking an adverse immune reaction. In this context, the tissue engineering scaffold must be as similar as possible to the natural bone tissue. Bone is a nanocomposite material composed of hydroxyapatite and collagen; hence, the development of nanocomposite scaffolds has been viewed as an appropriate choice for bone tissue restoration. In many situations, these composite materials combine a bioactive mineral phase with a biodegradable polymer phase. The current study aimed to create and analyze a new composite scaffold for bone tissue engineering applications employing bioactive glass nanoparticles (nBG) and fibrin.

    Methods

    The nBG used in this study was based on the 70:30: SiO-2CaO system, which was synthesized using the sol-gel method. Scanning electron microscopy (SEM), X-ray crystallography (XRD), and Fourier transform infrared (FTIR) spectroscopy were used to characterize the fabricated nanoparticles. On the other hand, the whole blood was centrifuged twice at 3000×g to separate the plasma from the blood, and during the next steps, fibrinogen and thrombin were separated from the platelet-free plasma. These components were then mixed with nBG to create an injectable composite scaffold. The composites were subjected to physicochemical characterization, such as degradability and clot formation rate, while human osteoblast-like cells (G292- cell line) were used to assess the scaffold's biocompatibility as well as cell proliferation and differentiation using the MTT and alkaline phosphatase activity tests, respectively.

    Results

    In the case of bioactive glass nanoparticles, SEM analysis verified the formation of spherical nanoparticles with a diameter of 50 to 110 nm. XRD analysis showed its non-crystalline nature, and the FTIR spectrum demonstrated the presence of Si-O-Si and O-H functional groups. Investigations on the composite of fibrin and bioactive glass nanoparticles (nBG) revealed that incorporating nBG into the fibrin hydrogel enhances its stability and reduces the degradation rate of the scaffold by approximately %40. In vitro investigations on G292- cells revealed that including nBG in the fibrin hydrogel improves cell viability, cell proliferation by approximately %150, and alkaline phosphatase activity by around %45.

    Conclusion

    Fibrin gel is widely used in bone tissue engineering applications. However, our studies show that when combined with bioactive glass nanoparticles, it is more effective at repairing damaged bones.

    Keywords: Bone, Tissue Engineering, Fibrinogen, Thrombin, Fibrin Bioactive Glass Nanoparticles
  • Seyed Ali Seyedmajidi*, Maryam Seyed Majidi, Sina Haghanifar

    The present study investigated the suitability of nanocomposite foams of fluorapatite and bioactive glass (FA /BG) in different weight ratios as scaffolds for bone tissue in rat tibia regeneration to determine the optimal composition. FA and BG nano powders with a weight ratio of 25% FA/75% BG (compound 1) and 75% FA/25% BG (compound 2) were used as precursors for gel casting to produce nanocomposite foams. Thirty rats were randomly divided into two equal groups. Disk-shaped samples of each compound were implanted into the tibias of 15 rats. After 15, 30, or 60 days, five rats from each group were sacrificed and subjected to radiological, histopathological, and histomorphometrical examination. Data were analyzed using SPSS software. No foreign body reaction was observed in either group at all intervals, and the bone-biomaterial junction was direct. Overall, the inflammation rate, and the number of blood vessels, osteoblasts, and osteoclasts decreased over time in both groups. However, the number of osteocytes, trabecular bone thickness, and the percentage of new bone formation increased, in contrast to the remaining biomaterial percentage. Most of the changes in the group implanted with compound 2 were significantly more significant and faster than in the other group. Although the composite with the higher percentage of FA was superior to the composite with the higher percentage of BG, considering the results of our previous similar studies, the composite with the same percentage of FA and BG is more favorable to be used as a substitute for bone tissue in the body.

    Keywords: Fluorapatite, 58S Bioactive Glass, Nanocomposite, Tissue Engineering
  • طاهره کریمی شایان، اسدالله اسدی*، آرش عبدالملکی، حسین حسن پور
    مقدمه

    یک گام کلیدی در موفقیت بازسازی بافت، انتخاب زیست مواد مناسب برای تهیه داربست های تقلید کننده ماتریکس خارج سلولی است. پلی کاپرولاکتون (PCL) به عنوان داربست در درمان ترمیمی و کاربردهای دارورسانی استفاده می شود. هدف از این مطالعه ایجاد یک نانو داربست PCL غنی شده با پیراستام و اکتروتید و بررسی اثرات محافظت عصبی آن بر سلول های پیش ساز عصبی است.

    مواد و روش ها

    ابتدا داربست های نانو غنی شده با دارو تهیه و خواص آن ها با آزمایش های مختلف مورد ارزیابی قرار گرفت. پس از تهیه نانو داربست الکتروریسی غنی شده با داروهای پیراستام و اکتروتید، سلول های PC12 با تراکم سلول های 104×1 در چاهک های پلیت 96 خانه کاشته شدند. پس از 2 ساعت، H2O2 به چاهک ها اضافه شد تا غلظت نهایی 57 میلی مولار به دست آید. زنده ماندن سلول ها 24 ساعت بعد با استفاده از روش MTT تعیین شد.

    یافته ها

    مورفولوژی داربست و ساختار شیمیایی آن تخلخل مناسبی را نشان داد. زیست سازگاری داربست که 24 ساعت پس از کشت سلول های PC12 بررسی شد، افزایش قابلیت زنده ماندن سلول ها و همچنین اتصال مناسب سلول ها روی داربست را نشان داد.

    نتیجه گیری

    نتایج ما زیست سازگاری و غیرسمی بودن داربست PCL را به همراه افزایش بقای سلولی در داربست های PCL/piracetam و PCL/octreotide نشان داد.

    کلید واژگان: تکنیک های کشت سلولی، ماتریکس خارج سلولی، مهندسی بافت
    Tahereh Karimi Shayan, Asadollah Asadi*, Arash Abdolmaleki, Hossein Hassanpour
    Introduction

    A key step in the success of tissue regeneration is the selection of suitable biomaterials for the preparation of extracellular matrix-mimicking scaffolds. Polycaprolactone (PCL) is used as a scaffold in regenerative therapy and drug delivery applications. The purpose of this study is to develop a PCL nano-scaffold enriched with piracetam and octreotide and to investigate its neuroprotective effects on neural progenitor cells.

    Materials and Methods

    First, drug-enriched nano scaffolds were prepared and their properties were evaluated with different tests. After preparing the electrospun nano-scaffold enriched with piracetam and octreotide drugs, PC12 cells with a density of 1 x 104 cells were planted in the wells of the 96-well plate. After 2 hours, H2O2 was added to the wells to achieve a final concentration of 57 mM. Cell viability was then determined 24 hours later using the MTT method.

    Results

    The morphology of the scaffold and its chemical structure showed appropriate porosity. The biocompatibility of the scaffold, which was checked 24 hours after the cultivation of PC12 cells, showed an increase in the viability of the cells as well as the proper connection of the cells on the scaffold.

    Conclusion

    Our results demonstrated the biocompatibility and non-toxicity of the PCL scaffold, along with increased cell survival on PCL/piracetam and PCL/octreotide scaffolds.

    Keywords: Cell Culture Techniques, Extracellular Matrix, Tissue Engineering
  • رویا لاری*، فاطمه جامعی، میلاد رضایی
    هدف

    ارگانوئیدها ساختارهایی کوچک و سه‎بعدی هستند که از نظر اجزا و عملکرد مشابه با اندام طبیعی بدن در ابعاد کوچک می‎باشند. فن‎آوری استفاده از ارگانوئیدها بحث جدید و هیجان انگیزی است که این چشم‎انداز را ایجاد کرده که بتوان مجموعه‎های فردی و پیچیده از بافت‎ها را در محیط آزمایشگاه برای هر فرد بیمار ایجاد کرد. هدف از این مطالعه خلاصه کردن دانش موجود در زمینه طراحی ارگانوئیدها است. به این منظور فناوری تولید ارگانوئیدهای مختلف بافتی را بررسی کرده و در مورد چشم اندازها و معایب استفاده از ارگانوئیدها بحث می کنیم.

    مواد و روش ها

    پژوهش حاضر یک مطالعه مروری توصیفی است. دراین تحقیق مقالات منتشر شده مرتبط با این تحقیق در پایگاه های اطلاعاتی PubMed و Scopus جست وجو شدند. مقالات در زمینه طراحی ماتریکس و سلول‎های مورد استفاده در مهندسی بافت ارگانوئید و هم چنین یافته‎ های جدید در طراحی ارگانوئید در این مطالعه استفاده شدند.

    نتیجه گیری

    کشت بافت‎ ارگانوئید به دانشمندان دیدگاه دقیقی از نحوه شکل‎گیری و رشد اندام‎ها و هم چنین بینش جدیدی در مورد رشد و بیماری انسان ارائه می‎دهد و هم چنین این فرصت را ایجاد می کند که چگونگی تداخل داروها با این "ارگان های کوچک" بررسی شود، که به طور بالقوه انقلابی را زمینه کشف دارو و گشودن رویکردهای جدید برای پزشکی شخصی ایجاد می‎کند. امید است که این مقاله راه را برای استفاده از این تکنولوژی در ایران هموار کند.

    کلید واژگان: ارگانوئید، مهندسی بافت، سلول‎های بنیادی، ماتریکس خارج سلولی
    Roya Lari*, Fatemeh Jameie, Milad Rezaei
    Introduction

    Organoids are small and three-dimensional structures that are similar to natural body organs in terms of components and functions. The technology of using organoids is a new and exciting issue that has created the prospect that individual and complex sets of tissues can be created in the laboratory environment for each patient. This review aims to summarise the current knowledge in the field of designing organoids. For this purpose, we examine the production technology of different tissue organoids and discuss the prospects and disadvantages of using organoids.

    Materials and Methods

    The present study is a descriptive review study. In this research, published articles related to this research were searched in PubMed and Scopus databases. Articles in the field of matrix design and cells used in organoid tissue engineering as well as new findings in organoid design were used in this study.

    Conclusion

    Organoid tissue culture provides scientists a detailed view of how organs form and grow, as well as new insights into human development and disease, Also the opportunity to study how drugs interact with these “small organs" potentially revolutionizes the field of drug development and opens new approaches for personalized medicine. It is hoped that this article will pave the way for the use of this technology in Iran.

    Keywords: Organoids, Tissue Engineering, Stem Cells, Extracellular Matrix
  • حسین رستمانی، امید فخرایی*، فاطمه طوسی زاده خراسانی، نرگس کلیدری
    زمینه

    نقایص مختلف بینی بنا بر علل مادرزادی یا سوانح، تقاضای زیادی را برای عمل های بازسازی بینی ایجاد کرده اند. عیوب بینی علاوه بر نقص عملکردی به عنوان یک نقص زیبایی نیز شناخته می شود، چرا که شکل بینی از بارزترین ویژگی هایی است که چهره انسان را مشخص می کند. با این حال، روش های معمول بازسازی به دلیل محدودیت ها قادر به پاسخ گویی نیستند.

    هدف 

    این مطالعه با هدف بررسی توانایی روش های مختلف چاپ زیستی سه بعدی در زمینه رفع عیوب ناحیه بینی انجام شده است.

    روش ها 

    در این مطالعه مروری از مقالات موجود در پایگاه های اطلاعاتی ساینس دایرکت، اشپرینگر، وایلی، کمبریج، دی گرویتر و گوگل اسکالر استفاده شده است. جست وجو با استفاده از کلیدواژه های tissue engineering ،nasal cartilage ،3D bioprinting و bioink materials و با محدودیت زمانی 4 سال اخیر انجام شد. از بین 300 مقاله یافت شده، در نهایت 159 مقاله بررسی شد.

    یافته ها

    چاپ زیستی با داشتن پتانسیل منحصربه فرد در زمینه ترمیم و بازسازی بافت غضروفی بینی، می تواند روشی مناسب برای برطرف کردن این نواقص باشد. هیدروژل ها با توانایی بارگذاری مواد مختلف ضمن ایجاد تخلخل و همچنین قابلیت جذب آب و محصور کردن سلول ها به گزینه ای عالی برای تقلید ریزمحیط بافت میزبان بدل شده اند. از سوی دیگر، کندروسیت های اتولوگ و سلول های بنیادی مزانشیمی اصلی ترین منابع سلولی برای مهندسی بافت غضروف بینی هستند.

    نتیجه گیری

    نتایج این تحقیق نشان داده که فناوری چاپ زیستی توانسته است بافت میزبان غضروف را به صورت ایمپلنت هایی قابل کاشت در جراحی تا حد قابل قبولی از لحاظ مورفولوژیکی، بیوشیمیایی و مکانیکی تقلید کند. استفاده از چاپ زیستی در سطح بالینی محدود است، اما چشم انداز این فناوری از آن جهت امیدوارکننده است که می تواند با هزینه پایین، دقت منحصربه فرد و شخصی سازی، معایب و نقایص بینی را برطرف کند.

    کلید واژگان: چاپ زیستی، بینی، مهندسی بافت، بافت غضروفی، مواد زیست سازگار
    Hosein Rostamani, Omid Fakhraei*, Fatemeh Toosizadeh Khorasani, Narges Kelidari
    Background

    Frequent nose defects due to inborn causes or accidents have increased the demand for rhinoplasty. In addition to a functional defect, nose defects are also known as aesthetic defects because the shape of the nose is one of the most prominent features that define the human face. Hence, common reconstruction methods could not meet the requirements caused by limitations. 

    Objective

    This study investigates the ability of different three-dimensional bioprinting methods to repair defects in the nose area.

    Methods

    In this review study, articles available in ScienceDirect, Springer, Wiley, Cambridge, De Gruyter, and Google Scholar databases were used. The search was done using the following keywords: Tissue engineering, nasal cartilage, 3D bioprinting, and bioink materials. The search was done with a time limit of the last 4 years. Out of 300 eligible articles, 159 articles were finally reviewed.

    Results

    Bioprinting has special potential for repairing nasal cartilaginous tissue. Hydrogels have become an excellent option for mimicking the microenvironment of the host tissue due to their porosity and ability to load different materials, as well as their ability to absorb water and encapsulate cells. On the other hand, the two main cell sources for tissue engineering of nasal cartilage are autologous chondrocytes and mesenchymal stem cells.

    Conclusion

    Bioprinting technology can bio-mimic the cartilage host tissue to an acceptable degree morphologically, biochemically, and mechanically to be implanted surgically. Although the use of bioprinting at the clinical level still faces limitations, the prospect of this technology is promising since it can fix nasal defects with low cost, unique accuracy, and personalization.

    Keywords: Bioprinting, Nose, Tissue Engineering, Cartilage Tissue, Biocompatible Material
  • Mohsen Rabbani *, Alireza A. Salehani, Mohammadhasan Farnaghi, Maryam Moshtaghi

    Fabricating three‑dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X‑100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze–thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant‑based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D‑printing inks and scaffolds for tissue engineering.

    Keywords: Plant leaves, plant tissue decellularization, scaffolds, three‑dimensional bioprinting, tissue engineering
  • آیدا ناحومی، مریم پیمانی، اسداله اسدی*، آرش عبدالملکی، یاسین پناهی، محمد علی شاه محمدی
    زمینه و هدف

     شناسایی برهمکنش های پروتئین ها یکی از چالش های اصلی در زمینه زیست ساختاری و بیولوژی مولکولی است. با وجود پیشرفت های گسترده، هنوز الگوهای دقیق برهمکنش های پروتئین- پروتئین ناشناخته است. هدف اصلی این مطالعه ارزیابی محاسباتی برهمکنش های فیبرونکتین1 ماتریکس خارج سلولی نای سلول زدایی شده و اینتگرین های سلول بنیادی بافت چربی جهت ارائه دقیق ترین تصویرسازی ممکن از این تعاملات و نقش آن ها در فرآیندهای بیولوژیکی است.

    روش کار

     پس از فرآیند سلول زدایی نای گوسفند از طریق روش دترجنت- آنزیمی، ارزیابی های بافت شناسی و عکس برداری از فراساختار نمونه ها به وسیله میکروسکوپ الکترونی نگاره انجام گرفت. همچنین شبیه سازی های اتصال پروتئین فیبرونکتین1 ماتریکس خارج سلولی با اینتگرین αvβ1 و α5β3سلول بنیادی مشتق از بافت چربی مورد بررسی قرارگرفت و تجزیه و تحلیل انرژی برهمکنش برای پیش بینی ساختار کمپلکس های پروتئین- پروتئین با استفاده از الگوریتم های موجود در سرورهای HDOCK و ClusPro اعمال شد.

    یافته ها

     یافته ها حاکی از حفظ اجزای ماتریکس خارج سلولی و فراساختار داربست بود. همچنین برای یافتن مطلوب ترین حالت های اتصال از نظر انرژی، تعدادی از آن ها از بین انواع اتصالات برتر به عنوان برهمکنش های پایدار گزارش شدند. این بینش درک ارزشمندی از چسبندگی ماتریکس سلولی، مهاجرت و سیگنال دهی، با پیامدهای بالقوه برای توسعه درمانی ارائه میدهد.

    نتیجه گیری

     داربست های تهیه شده، برای کاربردهای مهندسی ایده آل بوده و با تحلیل های محاسباتی و داده های تجربی، حالت های اتصال پایدار با بهره وری انرژی بین فیبرونکتین و اینتگرین تجسم یافته است. همچنین در آینده مطالعات بیشتر در مدل سازی چسبندگی سلولی در ارتباط با علم مهندسی بافت، می تواند بستر مناسبی جهت توسعه پزشکی بازساختی فراهم کند.

    کلید واژگان: ماتریکس خارج سلولی، فیبرونکتین، اینتگرین، مهندسی بافت، نای
    Aida Nahumi, Maryam Peymani, Asadollah Asadi *, Arash Abdolmaleki, Yasin Panahi, Mohammad Ali Shahmohammadi
    Background

     Identifying protein interactions is one of the main challenges in the fields of biostructure and molecular biology. Despite extensive progress, the exact patterns of protein-protein interactions are still unknown. The main goal of this study is to computationally evaluate the interactions of fibronectin-1 in the extracellular matrix of decellularized trachea and integrins in adipose tissue stem cells in order to provide the most accurate possible visualization of these interactions and their role in biological processes.

    Methods

     After decellularization of the sheep trachea through the detergent-enzyme method, histological evaluations and ultrastructure photography of the samples were done by scanning electron microscopy. Also, the simulations of fibronectin1 binding of extracellular matrix protein with integrin αvβ1 and α5β3 of stem cells derived from adipose tissue were investigated, and interaction energy analysis was applied to predict the structure of protein-protein complexes using the algorithms available in HDOCK and ClusPro servers.

    Results

     The findings indicated the preservation of extracellular matrix components and scaffold ultrastructure. Also, in order to find the most favorable connection states in terms of energy, some of them were reported as stable interactions among the top types of connections. This insight provides a valuable understanding of cell-matrix adhesion, migration, and signaling, with potential implications for therapeutic development.

    Conclusion

     The prepared scaffolds are ideal for engineering applications for which computational analysis and experimental data have been used for visualization of stable connection states with energy efficiency between fibronectin and integrin. Also, more studies on cell adhesion modeling in connection with tissue engineering science can provide a suitable field for the development of regenerative medicine in further studies.

    Keywords: Extracellular Matrix Fibronectin, Integrin, Tissue Engineering, Trachea
  • Bahareh Sadri, Massoud Vosough *

    The rapid development of knowledge on healthy nutrition, and hygiene practices, as well as the advent of antibiotics and vaccines, has led to increased life expectancy in the recent century. The extended lifespan has brought new challenges for healthcare professionals, including the management of chronic degenerative diseases, malignancies, and autoimmune disorders. Advanced therapeutic medicinal products (ATMPs) have emerged as a promising frontier alongside conventional therapeutic modalities, offering innovative solutions through cell-based therapies, gene therapy, and tissue engineering. Recent years have witnessed remarkable advancements in regenerative medicine and the launching of innovative ATMPs. Numerous ATMPs have been registered and approved by regulatory agencies for the management of different diseases in 2023. The approval of groundbreaking therapies around the world has made 2023 an exceptional year. Novel ATMPs and the development of artificial intelligence (AI) in 2023 will pave the way for the integration of ATMPs and advanced technologies in personalized medicine, early diagnosis, and targeted treatments.

    Keywords: Cell-Based Therapies, Gene Therapy, Tissue Engineering
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال