The Choice of an Admissible Set of k Non-nested Models
Message:
Abstract:
Suppose we have a random sample of size n of a population with true density h(.). In general, h(.) is unknown and we use the model f as an approximation of this density function. We do inference based on f. Clearly, f must be close to the true density h, to reach a valid inference about the population. The suggestion of an absolute model based on a few obsevations, as an approximation or estimation of the true density, h, results a great risk in the model selection. For this reason, we choose k non-nested models and investigate the model which is closer to the true density. In this paper, we investigate this main question in the model selection that how is it possible to gain a collection of appropriate models for the estimation of the true density function h, based on Kullback-Leibler risk.
Language:
Persian
Published:
Journal of Statistical Sciences, Volume:4 Issue: 2, 2011
Page:
149
magiran.com/p1029912  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 700,000ريال می‌توانید 100 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.