An intelligent control policy for fuel injection control of CNG engines

This paper proposes an intelligent control technique for fuel injection control of Compressed Natural Gas (CNG) engines. Recurrent Neuro-Fuzzy Networks are used to estimate and control air to fuel ratio (AFR) of CNG engines. To reasonably handle such a complicated control problem, a precise experimental test has been done on a real CNG fuelled vehicle and the process input output data have been collected by running the vehicle in transient conditions. To determine the proper amount of gas to be injected, a controller has been designed based on nonlinear inverse dynamics of AFR. The results show that the predicted results are in line with the measured fuel injection commands produced by the real electronic control unit (ECU). This evaluated and validated the efficiency of the controller. The control strategy has the advantage that control actions can be calculated analytically, avoiding the costly and time-consuming calibration efforts required in conventional fuel injection control strategies.
Iranian Journal of Science and Technology Transactions of Electrical Engineering, Volume:36 Issue: 1, 2012
83 to 94  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!