A COST SENSITIVE LEARNING METHOD TO TUNE THE NEAREST NEIGHBOUR FOR INTRUSION DETECTION

Message:
Abstract:
In this paper, a novel cost-sensitive learning algorithm is proposed to improve the performance of the nearest neighbor for intrusion detection. The goal of the learning algorithm is to minimize the total cost in leave-one-out classification of the given training set. This is important since intrusion detection is a problem in which the costs of different misclassifications are not the same. To optimize the nearest neighbor for intrusion detection, the distance function is defined in a parametric form. The free parameters of the distance function (i.e., the weights of features and instances) are adjusted by our proposed feature-weighting and instance-weighting algorithms. The proposed feature-weighting algorithm can be viewed as general purpose wrapper approach for feature weighting. The instance-weighting algorithm is designed to remove noisy and redundant training instances from the training set. This, in turn improves the speed and performance of the nearest neighbor in the generalization phase, which is quite important in real-time applications such as intrusion detection. Using the KDD99 dataset, we show that the scheme is quite effective in designing a cost-sensitive nearest neighbor for intrusion detection.
Language:
English
Published:
Iranian Journal of Science and Technology Transactions of Electrical Engineering, Volume:36 Issue: 2, 2012
Pages:
109 to 129
magiran.com/p1142886  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!