تخمین ضریب توزیع خاک-آب فلزات سنگین با کاربرد شبکه های عصبی مصنوعی

پیام:
چکیده:
آلودگی منابع آب و خاک یکی از چالش های مهم استفاده بهینه از این منابع در سرتاسر جهان است. ضریب توزیع (Kd) نه تنها یک پارامتر کاربردی در مدلسازی انتقال آلاینده ها در خاک است، بلکه در ارزیابی ریسک آلودگی منابع آب و خاک نیز کاربرد دارد. مدل های پارامتریک، معمول ترین روش کمی برای تخمین Kd هستند. لیکن معمولا ضریب همبستگی این مدل ها اندک است. درحالیکه مقدار تخمینی این پارامتر می تواند باعث اشتباه قابل توجه در پیش بینی مهاجرت آلاینده ها در آبخوان و یا انتخاب روش پایش محیط آلوده شود. هدف از این پژوهش، بررسی توانایی شبکه های عصبی مصنوعی در مدلسازی ضریب توزیع فلزات سنگین و بهبود دقت تخمین آن بود. بدین منظور، سه نوع شبکه عصبی پرسپترون چند لایه (MLP)، توابع پایه شعاعی (RBF) و شبکه های سلسله مراتبی (HN) و دو فلز سنگین کروم و کادمیوم، برای مدلسازی انتخاب شدند. ابتدا داده های جمع آوری شده به دو دسته آموزش و آزمون تفکیک شدند که یک دسته برای آموزش شبکه ها بکار رفت و با دسته دیگر دقت شبکه های تعمیم یافته ارزیابی شد. بهترین هندسه شبکه نیز با روش آزمون و خطا بدست آمد. نتایج مدلسازی برای فلز کروم نشان داد که هر دو شبکه MLP و RBF، بسیار توانمند عمل کرده اند و برتری نسبی در تخمین Kd با شبکه MLP بوده است. هرچند تعداد داده های کاربردی برای آموزش شبکه ها زیاد نبود (حداقل 9 و حداکثر 16 داده)، لیکن نتایج نشان داد که این تعداد کم برای مدلسازی کفایت می کند. این یافته گامی موثر در تخمین Kd است چراکه افزون بر زمان بر و هزینه بر بودن اندازه گیری مستقیم آن، در هر پروژه نیز معمولا تعداد اندکی نمونه در اختیار است. نتایج مدلسازی تخمین Kd(Cd) با شبکه های عصبی مصنوعی نیز نشان دهنده برتری شبکه MLP در مدلسازی بود. این شبکه ها توانستند مقدار ضریب همبستگی بین مقادیر واقعی و پیش بینی شده را به طور قابل-توجهی افزایش دهند و از 37/0 در مدل پارامتریک برازش داده شده به داده ها، به 63/0 برسانند
زبان:
فارسی
در صفحه:
25
لینک کوتاه:
magiran.com/p1160423 
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 700,000ريال می‌توانید 100 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.