Predicting saffron yield from meteorological data using expert system, Razavi and South Khorasan Provinces
Message:
Abstract:
Khorasan Province is one of the most important provinces of Iran، especially as regards agricultural product. The prediction of crop yield with available data has important effects on socio-economic and political decisions at the regional scale. Recently، the application of Artificial Neural Network (ANN) has been developed as a powerful tool which enables to solve accurately the most complicated equations and to perform appropriate numerical analysis. This study shows the ability of Artificial Neural Network (ANN) technology for the prediction of saffron (Corcus sativus) yield، based on the available daily weather and yearly agricultural data. Evapotranspiration، temperature (max، min، and dew temperatures)، precipitation and daily average relative humidity for 20 years at synoptic stations were the weather data used. The potential of ANN and Multi-Layered Preceptron (MLP) methods were examined to predict saffron yield. The MLP models of Artificial Neural Networks and regression using maximum temperature، precipitation، evapotranspiration and relative humidity of autumn and last year yield، as independent variables in predicting the crop yield (R2=0. 8832، RMSE= 0. 689 kg. ha-1، MAE= 0. 560 kg. ha-1)، the most efficiency was achieved. 
Language:
Persian
Published:
Journal of Saffron Research, Volume:2 Issue: 1, 2015
Pages:
15 - 33
magiran.com/p1366515  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.