comparison of the Growth and Differentiation of the Human Umbilical Cord Mesenchymal Stem Cells on the Poly-L-lactic acid/Hydroxyapatite Composite Scaffold with Pure Poly-L-lactic Acid Scaffold

Abstract:
Background and
Purpose
Natural bone is a combination of polymer and biological apatite, therefore, the composite scaffolds made of polymers and bioactive ceramics have found wide applications in bone tissue engineering studies. Among various polymers, the poly-L-lactic acid (PLLA) and hydroxyapatite (HA) have attracted much attention due to their optimal properties. In this study, using PLLA polymer and hydroxyapatite (which is similar to human bone mineral component) three-dimensional composite scaffolds were developed by Electrospinning Method. Then the behavior of human umbilical cord mesenchymal stem cells (MSCs) was investigated on the scaffolds. The aim of this research was to develop an appropriate bioactive and functional scaffold for bone tissue engineering.
Materials And Methods
In this study mesenchymal stem cells were isolated from the human umbilical cord. The cells were cultured on both PLLA and PLLA/HA (10%) composite polymeric nano scaffolds. Biocompatibility of scaffolds was confirmed by MTT assay. The morphological and cell adhesion characteristics of MSCs on the scaffolds were compared using Scanning Electron Microscopic (SEM) imaging. Finally, the cells were treated with osteogenic differentiation medium for 21 days in order to investigate their differentiation potential on the scaffolds. The differentiation of the stained cells with Alizarin Red and Von Kossa were studied at 7,14 and 21 days after cultivation.
Results
SEM studies showed that the surface properties of both scaffolds were desirable and the cells not only had the ability to attach and proliferate better on the nanocomposite scaffolds, but were also in a natural condition morphologically. The comparison of staining results indicated a higher differentiation rate in composite polymeric nano scaffold.
Conclusion
The results showed that the PLLA/HA nano scaffold could be a very good candidate for bone tissue engineering.
Language:
Persian
Published:
Journal of Mazandaran University of Medical Sciences, Volume:24 Issue: 120, 2015
Pages:
133 to 147
magiran.com/p1367692  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!