Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using a Robust\ Genetic Algorithm
In this paper the fuzzy structural reliability index was determined through modeling epistemic uncertainty arising from ambiguity in statistical parameters of random variables. The First Order Reliability Method (FORM) has been used and a robust genetic algorithm in the alpha level optimization method has been proposed for the determination of the fuzzy reliability index. The sensitivity level of fuzzy response due to the introduced epistemic uncertainty was also measured using the modified criterion of Shannon entropy. By introducing bounds of uncertainty, the fuzzy response obtained from the proposed method presented more realistic estimation of the structure reliability compared to classic methods. This uncertainty interval is of special importance in concrete structures since the quality of production and implementation of concrete varies in different cross sections in reality. The proposed method is implementable in reliability problems in which most of random variables are fuzzy sets and in problems containing non-linear limit state functions and provides a precise acceptable response. The capabilities of the proposed method were demonstrated using different examples. The results indicated the accuracy of the proposed method and showed that classical methods like FORM cover only special case of the proposed method.
Iranian journal of fuzzy systems, Volume:12 Issue:2, 2015
23 - 40  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!