Seismic Three-Dimensional Stability of Concave Slopes by Lower Bound Limit Analysis
Author(s):
Message:
Abstract:
This paper is devoted to present a method of three-dimensional stability analysis of concave slopes in plan view based on lower-bound theorem of the limit analysis approach in static and seismic cases. Slope stability problems are often analyzed two-dimensionally by conventional limit equilibrium method (LEM). Accuracy of LEM is often questioned due to the underlying assumptions that it makes, and at the same time, analyzing a 3D problem two-dimensionally may lead to significant differences in safety factors depending on the slope geometries. In this paper, the numerical linear finite element and the rigorous lower bound limit analysis method is used to produce some seismic stability dimensionless charts for three-dimensional (3D) homogeneous concave slopes. The charts can be used by practicing engineers as a convenient tool to estimate the stability for excavated or man-made slopes. The results obtained using this 3D method showthat the stability of concave slopes increases as the relative curvature R/H and the relative width of slope decrease.
Language:
English
Published:
Journal of Seismology and Earthquake Engineering, Volume:16 Issue: 1, Spring 2014
Pages:
39 to 50
magiran.com/p1413461  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!