Risk Assessment of Air Pollutants Emissions in Beihaghi Terminal By Modeling

Message:
Abstract:
Introduction
Public transportation system is the perfect solution to organize transportation in the city. This system reduces the demand for private car or taxi area provides economic savings. Public transport will not only reduce the use of private vehicles, but it will reduce traffic and air pollution. The public transportation system of buses to be Extremist as one of the most efficient public transportation systems mentioned. Bus terminals play an important role in the regulation of urban transportation. However, these terminals have the potential to become sources of air pollution. The mathematical model can easily estimate emissions of terminal vehicles and concentrations of pollutants. With alternative methods of sampling and measurement model can more quickly and cost less to review existing situation and to anticipate the future. If needed, it can be subject to examination and sampling. The purpose of this study is to assess the risks facing those in the terminal, including drivers, office workers and travelers to the area, and air pollutants CO, NO2, SO2 present at the terminals on modeling and PM10 Payments.
Materials And Methods
IVE model is designed to estimate emissions from motor vehicles intended to focus control strategies and transportation planning on those that are most effective, predict how different strategies will affect local emissions and measure progress in reducing emissions over time. Input data of this model consist of vehicle types, number of vehicles, their presence time in terminal, engine type, age, exhaust control technology, fuel type and speed. Moreover the essential geographical and meteorological information that were collected by documents, questionnaires and statistical modeling. According to the traffic in the terminal and at different hours of the day, the average amount of estimated emissions of air for NO2, PM10, CO and SO2 were determined which is one of the BREEZE AERMOD inputs. Terminal resource modeling for air pollutants to a level that is unevenly spread is considered. In this way, surface coordinates and the release of three terminals are needed. For more accurate determination of concentrations of air pollutants concentration field is required. Concentrations of air pollutants in the desired period of time without taking into account the effects of air pollutants at the terminal air pollution monitoring stations near the terminals were estimated. Exposure to the range of terminal points needed to determine how the output data set is analyzed. Finally the required parameters and output in period of time were set. After completing all input data, running the model with known concentrations of air pollutants were estimated. Two groups of people directly exposed to air pollutants in the terminal. A group containing of drivers and terminal staff that long at all periods of their career are in contact with the concentrations of air pollutants and the other group contain of passengers with different patterns of exposure to air pollutants. In this research, risk assessment method of RAIS from USEPA is used. Discussion of Results and
Conclusions
Emissions of air pollutants and their concentrations in the IVE model and BREEZE AERMOD model have been used for risk assessment. Air pollution emissions are calculated by IVE model. The output data of IVE model is used as the input data for the BREEZE AERMOD model which the concentration of pollutants are estimated by this model. Finally the cancer and non-cancer risk of CO, NO2, SO2 and PM10 concentrations is calculated By the RAIS, which is achieved by the use of non-cancer and cancer risk assessment of pollutants, quantitative assessment of risks from inhaled pollutants and populations that are affected. Searches performed for the pollutants NO2, CO and SO2 gradients cancer is currently not available. Only the cancer risk of PM10 has been calculated by its cancer slope factor. After calculation of the cancer risk for the population, the cancer risk is multiplied by the number of people in contact. Inhalation of hazardous air pollutants per passenger in Beihaghi terminal, HQinhale results for the different groups are shown in Table 1. Table 1- Cancer and non-cancer risk assessment of air pollutants in the Beihaghi terminal.
Language:
Persian
Published:
Journal of Environmental Studies, Volume:41 Issue: 1, 2015
Pages:
97 to 105
magiran.com/p1415214  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!