A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Author(s):
Abstract:
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the SVR for determining the optimal value of its user-defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the SVR. In this research, the input data for the SF estimation consists of the values of geometrical and geotechnical input parameters. As an output, the model estimates the SF that can be modeled as a function approximation problem. A data set that includes 46 data points is applied in current study, while 32 data points are used for constructing the model, and the remainder data points (14 data points) are used for assessment of the degree of accuracy and robustness. The results obtained show that the hybrid SVR with ACO model can be used successfully for estimation of the SF.
Keywords:
Language:
English
Published:
International Journal of Optimization in Civil Engineering, Volume:6 Issue: 1, Winter 2016
Pages:
63 to 75
https://www.magiran.com/p1457498
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Improvement of drilling project efficiency: AI-based roadheader performance prediction and evaluation
H. Fattahi*, F. Jiryaee
Tunneling&Underground Space Engineering, -
Optimizing mining economics: Predicting blasting costs in limestone mines using the RES-based method
*, Hossein Ghaedi
International Journal of Mining & Geo-Engineering, Spring 2024