Pelt Pattern Classification of New Born Lambs Using Image Processing and Artificial Neural Network
Message:
Abstract:
In this study a method to determine the pelt pattern of Zandi sheep lambs using image processing and neural network is presented. Data were collected from Zandi sheep breeding center located in the North East of Tehran (Khojir). In the lambing season, pelt pattern (including regular and irregular patterns) of 300 newborn lambs along with other important characteristics were determined by qualified appraisers. Simultaneously, some photos were taken from each lamb pelt using digital camera. Due to the difference in image resolution and variety of pelt patterns, a total of 170 high quality pictures of lambs were selected and used for final assessment. Two independent image processing scenarios were developed in MATLAB GUI environment. In both scenarios, after the necessary image transformation and segmentation the relevant features were extracted from each image. In the first scenario, some morphological and texture features were extracted from images to classify the pelt pattern of lambs. In the second scenario, the original image firstly was divided into four equal sub-images, and in addition to the texture and morphological features which were extracted in the first scenario, variances and correlations between four sub-images were calculated and added to the features vector. The selected features were used as an input data to the artificial neural network to classify pelt pattern quality of lambs. Input data to the neural network in the first scenario included 21 morphological and texture features, while in the second scenario included 44 features. In both scenarios a three layers Percepteron artificial neural network with feed forward back-propagation algorithms were used. The regular and irregular pattern of lamb pelts were detected by the neural network with accuracy of 92 % and 100% in the first and second scenarios, respectively. The results showed that determination of pelt pattern of lambs based on proposed image processing method is feasible, and substitution of this new method instead of human appraisal method is achievable.
Article Type:
Research/Original Article
Language:
English
Published:
Global Journal of Animal Scientific Research, Volume:3 Issue: 4, 2016
Pages:
321 - 328
magiran.com/p1477767  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.