Automated Fault Detection of Tri-Lobe Compressor Using Wavelet Transformation and Support Vector Machine
Abstract:
In order to diagnose the faults of industrial rotating machines automatically, an expert system is used in this paper. A tri-lobe roots blower compressor is used as a test rig to represent an industrial machine. The proposed method for training the expert system includes: data acquisition, signal processing and intelligent pattern recognition stages. Acceleration signals of healthy and faulty compressor components were acquired in the first stage. The signals were conditioned to be used for the signal processing as the next stage. It is necessary to find pattern recognition criterion of the compressor fault diagnosis. Therefore feature extraction of data was performed as part of the second stage. In the third stage, a support vector machine tool was trained and employed to classify the faults. The proposed procedure was tested and the obtained results showed that this algorithm works very well and it fully classifies the faults automatically.
Language:
Persian
Published:
Journal of Applied and Computational Sciences in Mechanics, Volume:27 Issue: 1, 2016
Pages:
19 - 34
magiran.com/p1510455  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.