The Development of Nanofibrous Media Filter Containing Nanoparticles for Removing Particles from Air Stream

Message:
Abstract:
Background And Objectives
The goal of the present study was to develop nanofibrous media filters containing MgO nanoparticles for future application in removing particles from gas stream.
Materials And Methods
Electrospun nanofibers were fabricated using experimental design prepared by Response Surface Methodology. Optimization of electrospinning parameters was conducted for achieving the desired filter properties including fiber diameter, porosity, and bead number. After taking SEM images, the determination of fiber diameter and number of beads were performed through Image Analysis and the calculation of porosity percent was performed by MATLAB. A filter media was produced based on the optimized conditions of electrospinning and it was certified by the HEPA filter performance test.
Results
In terms of morphological quality of fibers including fiber uniformity, absence of branching and lower numbers of beads, experiment standard No. 2 (STD 2: concentration 16 wt%, voltage 10 kV, and distance 15 cm) had the best combination. Maximum fiber diameter was also observed in STD 2. Among the electrospinning, the highest correlation coefficient was observed between solution concentration and response variables and the relationship between concentration and both fiber diameter and porosity percent was statistically significant (p 0.05) and a weak negative relationship was seen between fiber diameter and bead number (r=-0.2, p>0.05).
Conclusion
Solution concentration was found as the most affecting factor on the filter properties, so that the higher concentration leaded to the lower bead number and greater fiber diameter. Increase in fiber diameter resulted in larger pore size and higher porosity. Quadratic models were known for understudy variables. Efficiency of the optimized filter was comparable with the HEPA filter and it had the lower pressure drop.
Language:
Persian
Published:
Iranian Journal of Health and Environment, Volume:8 Issue: 4, 2016
Pages:
509 to 524
magiran.com/p1515842  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!