Designing stable neural identifier based on Lyapunov method
Abstract:
The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of MDNN is proposed. By proposed method, some constraints are obtained for learning rate. Lyapunov stability theory is applied to study the stability of the proposed algorithm. The Lyapunov stability theory is guaranteed the stability of the learning algorithm. In the proposed method, the learning rate can be calculated online and will provide an adaptive learning rare for the MDNN structure. Simulation results are given to validate the results.
Language:
English
Published:
Journal of Artificial Intelligence and Data Mining, Volume:3 Issue:2, 2016
Pages:
141 - 147
magiran.com/p1538759  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!