پیش بینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکه های عصبی مصنوعی المانی (ENN)

چکیده:
برآورد صحیح آبدهی رودخانه ها یکی از موارد مهم در پیش بینی خشکسالی، سیلاب، طراحی سازه های آبی، بهره برداری از مخازن سدها و کنترل رسوب می باشد. از این رو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روش های هوشمند مانند شبکه های عصبی مصنوعی و روش های مختلف داده کاوی بهره گرفته اند. در این مطالعه، جهت پیش بینی جریان روزانه رودخانه اهرچای، از روش های شبکه عصبی مصنوعی المانی (ENN) و قوانین درختی M5 بهره گرفته شد. بدین منظور از داده های جریان روزانه ایستگاه هیدرومتری اورنگ واقع بر رودخانه اهرچای در استان آذربایجان شرقی برای مدل سازی استفاده شد. نتایج حاصل از پیش بینی جریان در یک روز بعد نشان داد که گرچه روش ENN در بهترین سناریو با ساختار شبکه نسبتا پیچیده 1-3-9 که بیان گر 9 گره در لایه ورودی، 3 گره در لایه پنهان و یک گره در لایه خروجی با 90/0R2=، (m3/s)028/0RMSE= و (m3/s)001/0MAE= از دقت بیش تری برخوردار است. اما روش قوانین M5 تنها با دو پارامتر جریان در روز جاری و یک روز قبل به عنوان ورودی، با 83/0 R2=، (m3/s)734/0RMSE= و (m3/s)317/0 MAE= علاوه بر سادگی، از دقت قابل قبولی نیز برخوردار بوده است. مقایسه عملکرد دو مدل نشان داد، گرچه شبکه عصبی المانی دارای دقت بالاتری نسبت به روش M5 می باشد، ولی روش M5 با توجه به ارائه قوانین کارآمد و ساده اگر-آنگاه و روابط خطی ساده برای پیش بینی جریان و نیز تعداد پارامتر ورودی موردنیاز کم تر، می تواند بعنوان یک روش جایگزین مناسب بکار گرفته شود.
زبان:
فارسی
صفحات:
11 -18
لینک کوتاه:
magiran.com/p1547615 
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.