Daily Discharge Forecast of Aharchay River using M5 Model Trees and Its Comparing with Elman Neural Networks (ENN)
Abstract:
The correct estimation of river discharge is an important issue in forecasting of drought and floods, designing of water structures, dam reservoir operation and sediment control. For this reason, water resources managers used intelligent techniques such as Artificial Neural Networks and data mining methods such as Decision Tree to reliably estimate the discharge in a river. In this study, the Elman Neural Networks (ENN) and M5 model trees were used to forecast daily discharge of Aharchay River. The daily discharge data of Aharchay River measured at the Orange hydrometric station was used for modeling. The results showed that for the forecasting discharge of one day ahead, the ENN method presents more accurate results in compression with M5 model. For forecasting discharge of one day ahead, the best scenario of ENN model with a relatively complicated structure of 9-3-1 that indicating 9 nodes in input layer, 3 nodes in hidden layer and 1 node in output layer, the calculated error measures were R2=0.90, RMSE=0.028 (m3/s) and MAE=0.001 (m3/s). The corresponding values for M5 model with only two input parameters including the discharge of current and last day, were R2=0.83, RMSE=0.734 (m3/s) and MAE=0.317 (m3/s). Comparing the performance of ENN and M5 models indicated that, however the ENN approach may present more accurate results than the M5 model tree, but the M5 model provides more understandable, applicable and simple linear relation in forecasting daily discharge. In addition, the number of required input parameter for M5 model is less than ENN model. Thus, the M5 model tree can be used as an alternative method in forecasting daily discharge.
Language:
Persian
Published:
Iranian Journal of Watershed Management Science and Engineering, Volume:10 Issue: 33, 2016
Pages:
11 - 18
magiran.com/p1547615  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.