The effect of time and pore fluid characteristics on electrokinetic performance in removing heavy metals from soil

Abstract:
The electrokinetic (EK) approach is one of the popular choices for the extraction of inorganic contaminants (e.g. heavy metals) from a soil matrix. On the other hand, many factors can affect the performance of EK contaminant remediation. Therefore, in the present study a series of macro and micro level tests including electrokinetic experiments, pH and electrical conductivity (EC), adsorption and desorption, X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were performed to investigate the effects of time and pore fluid characteristics on the efficiency of EK remediation. For this purpose, the kaolinite clay was separately infected with different solutions containing zinc nitrate and lead nitrate in concentrations of 20 and 40 cmol/kg and then electrokinetic experiments on a laboratory scale were conducted at 2 V/cm voltage gradient in time periods of 3, 6, 12, 24 and 48 days. Nitric acid was also used as a catholyte solution to enhance the soil remediation process. The results obtained show that the soil response to the EK remediation is a function of the contaminant characteristics, the pH of soil-electrolyte system and the time of testing. In EK contaminant remediation from a soil matrix, it is significant to pay particular attention to the effect of the concentration and type of contaminant on the applicability and efficiency of this method. The results reveal that under the same conditions, especially in the low times, extraction efficiency from samples containing lead was measured approximately 70 percent of the samples containing zinc. This is because the lead tends to more adsorbe on the clay surface and has a greater tendency to form precipitate. In addition to the type of contaminants, it was found that the increase in concentration of contaminants in the soil through a series of physical-chemical reactions accelerates clean up capabilities, particularly in the initial time period of the EK experiments. Catholyte conditioning with acidic solution enhanced the removal of heavy metals, which is mainly due to microstructural changes and an increase in the mobility of pollutants. In fact, based on the X-ray diffraction and scanning electron microscope analyses, the microstructural characteristics and the arrangement of the clay particles have an important role in the process of electrokinetic soil remediation. The formation of flocculated structure decreases the retention capacity of the clay particles and also increases the flow path, which enhance the efficiency of pollutant extraction. It was found that the soil remediation, especially in the parts close to the anode, greatly enhanced with increase the time of EK test; however, the further increase in time had a limited impact on results, especially in the samples containing high concentrations of zinc. This indicates that there is an optimum time in the process of cleaning up heavy metals from the soil by EK method, which depends on the type and concentration of contaminant. Moreover, it was seen that the extent of contaminant removal from anode side towards the cathode side is considerable when catholyte conditioning with acidic solution is used. In other words, reducing the pH of soil-electrolyte system has a significant impact in increasing the efficiency of pollutant extraction.
Language:
Persian
Published:
Quranic Knowledge Research, Volume:16 Issue: 2, 2016
Pages:
229 to 241
magiran.com/p1555882  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!