Barrett's Mucosa Segmentation in Endoscopic Images Using a Hybrid Method: Spatial Fuzzy c-mean and Level Set
Message:
Abstract:
Barrett's mucosa is one of the most important diseases in upper gastrointestinal system that caused by gastroesophagus reflux. If left untreated, the disease will cause distal esophagus and gastric cardiaadenocarcinoma. The malignancy risk is very high in short segment Barrett’s mucosa. Therefore,lesion area segmentation can improve specialist decision for treatment. In this paper, we proposeda combined fuzzy method with active models for Barrett’s mucosa segmentation. In this study,we applied three methods for special area segmentation and determination. For whole disease areasegmentation, we applied the hybrid fuzzy based level set method (LSM). Morphological algorithmswere used for gastroesophageal junction determination, and we discriminated Barrett’s mucosa from breakby applying Chan-Vase method. Fuzzy c-mean and LSMs fail to segment this type of medical imagedue to weak boundaries. In contrast, the full automatic hybrid method with correlation approachthat has used in this paper segmented the metaplasia area in the endoscopy image with desirableaccuracy. The presented approach omits the manually desired cluster selection step that needed theoperator manipulation. Obtained results convinced us that this approach is suitable for esophagusmetaplasia segmentation.
Language:
English
Published:
Journal of Medical Signals and Sensors, Volume:6 Issue: 4, 2016
Page:
231
magiran.com/p1596515  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.