Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin
Abstract:
Introduction
The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake.
Materials And Methods
Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of its volume and has a critical condition. Therefore, planning, managing and optimizing utilization of water resources in the basin have a high research priority and this requires the concentration on the consumption of water resources. In this study five major products including, wheat, sugar beet, tomato, alfalfa and corn, were studied. For this purpose, seven synoptic meteorological station data including,Salmas, Urmia, Mahabad, Takab, Tabriz, Maragheh and Sarab were used to calibrate the downscaling atmospheric-ocean general circulation model LARS.WG5 and forecast meteorological data in the future periods time (2011-2030) and (2046-2065) with the A2 scenario.The reason to selectA2 scenario was the most critical situation for the mentioned scenario. Then the obtained data were used to estimate the water requirement and water footprint of mentioned plants separately blue and green water footprint in the future periods.
Results And Discussion
The resultsof themeteorological data prediction showed thatall synoptic stations except for Tabriz station the average annual predicted rainfallvalues had the deviationfromhistoricalvalues.The mentioneddeviation in the south (Tekab, Mahabad) and West (Urmia, Salmas) ofUrmia lake basin will showincreaseanddecrease in theannual rainfallin the future, respectively.Moreover,the average annual of predicted temperature values for all studied stations showed that the temperature will increase about1°Cduring2011-2030 period and 2°C during 2046-2065 period. Potential evapotranspiration, as another important meteorological parameter has essentialrole in the estimation of crop water requirements which will be slightly affected by climate change phenomena and it will increase in the summer. The results of agricultural products water footprint show that the maximum amount of green water footprint in all studied stations was related to wheat and alfalfa, and this water footprint depend on the time and growth period. For corn, tomatoandsugar beetproducts the ratio of blue and green water footprint is greater 9. By comparing the water footprint of products it can be seen that in Urmia, Salmas and Tekab stations water footprint is decreased with decreasing rainfall and this decrease during 2065 – 2045 periods is higher than 2030 – 2011 periods.
Conclusions
According to the results, annual precipitation in southern and western regions of the Lake Urmia basin will be increased and decreased, respectively in the future periods. However, increasing approximately one Celsius degree in temperature is expected for each of the periods all over the basin. In addition,the results showed that the amount of potential evapotranspiration will be increased in the warm months (June to September) in the future periods, and agricultural water consumption pattern will be changed affected by evapotranspiration variations. In the future periods, the blue and green water footprint of most agricultural products will be increased and decreased, respectively.
Language:
Persian
Published:
Journal of water and soil, Volume:30 Issue: 4, 2016
Pages:
1075 to 1089
magiran.com/p1608757  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!