Prediction for relict population of Mountains Vipres (Montivipera spp) in western Iran; an ensemble distribution modeling along with climate change detection from past to future

Abstract:
Modeling potential distributions in order to find unidentified populations of rare and endangered species in inaccessible areas is a promising tool for conservation biologists. Mountain viper (Montivipera spp.) comprises M. raddei raddei, M. latifii, M. r. albicornuta, and M. Kuhrangica, which are patchily distributed throughout Alborz and Zagros Mountain Ranges of Iran. Identifying unrecorded populations of these species within the already established distribution range is critical in conservation action planning such as corridor design and protected area establishment as well as genetic management of the species. In this study, with an aim to predict the occurrence of unidentified mountain viper populations, we used the Ensemble method as well as four modeling algorithms including Maximum Entropy (Maxent), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and Generalized Linear Modeling (GLM). Locality points were collected for mountain vipers from western Iran and large-scale habitat variables related to topography, climate, and land use/cover were used in the modeling. Results indicated that temperature in the warmest month, precipitation in the driest month, and slope were the most important predictors of mountain viper presence in suitable habitats. Among the four modeling algorithms, Maxent (AUC= 0.97) and SVM (AUC= 0.85) showed the highest and the lowest predictive powers, respectively. Pooling the results of the modeling methods, we found that possibility of finding new populations of mountain vipers is highest in Dalakhani (Amrolah and Bistoun) ÑÂæ in Kermanshah province, Chehel-cheshmeh and Hezarkanian in Kordestan province, Oramanat at the border of the two aforementioned provinces, and Almubolagh and Garin in western and southern Hamedan province respectively. Currently, 31.6 percent of the suitable habitats identified in our models are represented within the network of national protected areas. Establishment of new protected areas in suitable locations identified in our models can complement the current system of protected areas for conservation of mountain vipers, especially the endemic species. We also determined the effects of climate change on the extent and suitability of mountain viper habitats in the past (Last Glacial Maximum, 21000 years ago) and the future (the year 2070) using 19 climatic variables. Considering the recent and predicted rates of global warming, our climatic models point to a continuous contraction of suitable habitats for mountain vipers from the past to the year 2070. This thought-provoking finding warns that the negative effects of climate change on biodiversity and specifically in our study, endemic mountain vipers.
Language:
Persian
Published:
Journal of Natural Environment, Volume:69 Issue: 2, 2016
Pages:
303 to 327
magiran.com/p1627001  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!