Optimization of Properties and Light Shelf System in Architecture of Learning Building

Abstract:
Nowadays, energy crisis is one of the most challenging issues regarding to contemporary architecture of developing countries such as Iran. It is important to combine architecture and new technology to reduce energy consumption in educational and learning buildings those who are run in day-time period. Therefore, the architecture of educational and learning building more than other types of office buildings shifts toward adoption of renewable energy sources. The attempts to reduce the consumption of energy have led to use of renewable energy sources especially daylight. Literature review of the paper show that one of the most recommended approaches toward adoption of maximum daylight energy is to concentrate of the proportion of classroom as well as opening properties of the class, in order to maximize the use of solar energy during the day. It is very important to explain that a considerable number of Iranian cities such as Tehran enjoy a significant amounts of sunshine duration. It is to estimate the total energy provided with sunlight over a given period of a day, months or year. Sunshine hours as a climatological indicator in major parts of Iran such as Tehran, show that a considerable quantity of daylight energy is available during daytime. In other words, sunshine duration refers to level of cloudiness of a location as well as direct or indirect access to solar energy. The main goal of the research is to optimize the properties of light shelf system in general openings of south side of a sample classroom, in order to find energy efficient properties of light shelf in that sample classroom. Thus, the research is to find the most efficient properties of light shelf to collect better daylight distribution based on better uniform illumination, decrease the level of glare and normalizing the average intensity of daylight. The most important questions of the research are: 1- What are the most important characteristics of light shelf for better uniform illumination, decrease the level of glare and normalizing the average intensity of daylight? 2- How could the properties of light shelf for education and learning spaces be optimized? In order to find the answers of the research questions, cosi-experimental research strategy has been adopted as well as simulation and modelling research methods based on Readiness and Eco-Tec commercially available software. Based on experimental discussion, the results of the research show significant consequences of adoption of reflective surfaces in light shelf system. The results suggest usage of reflective surfaces to transmit light into the depth of such spaces. The suggested system not only provides the classroom with shade near the window, but also increases light penetration into the depth of the space. Therefore the optimum model shows better uniform natural illumination for the interior space of a sample classroom. The results persist on remarkable performance of using combined energy efficient lighting systems those in which light shelf runs along the canopy. The developed lighting system provides a uniform illumination with an average intensity of 300 lux which is recommended for the school classroom.
Language:
Persian
Published:
HOnar - ha - ye - ziba Memari - va - shahrsazi, Volume:21 Issue: 2, 2016
Pages:
81 to 92
magiran.com/p1665500  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!