On Twin-Good Rings
Author(s):
Abstract:
In this paper, we investigate various kinds of extensions of twin-good rings. Moreover, we prove that every element of an abelian neat ring R is twin-good if and only if R has no factor ring isomorphic to Z2 or Z3. The main result of [24] states some conditions that any right self-injective ring R is twin-good. We extend this result to any regular Baer ring R by proving that every element of a regular Baer ring is twin-good if and only if R has no factor ring isomorphic to Z2 or Z3. Also we illustrate conditions under which extending modules, continuous modules and some classes of vector space are twin-good.
Keywords:
Language:
English
Published:
Iranian Journal of Mathematical Sciences and Informatics, Volume:12 Issue: 1, May 2017
Pages:
119 to 129
https://www.magiran.com/p1674661