Tumor necrosis factor-alpha and its inhibition strategies: review article

Message:
Abstract:
Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine produced by a variety of cells, including hematopoietic and non-hematopoietic cells, malignant cells, macrophages, B lymphocytes, T lymphocytes, natural killer cells, neutrophils, astrocytes, endothelial cells, and smooth muscle cells. TNF-α is a homo-trimeric molecular whose individual subunits are composed of antiparallel beta-sheets, forming a regular triangular prism shape. TNF-α binds to three receptor molecules through its receptor-binding sites, which are at the base of its pyramid structure. Biological responses to TNF-α are mediated through two different receptors: TNFR1 and TNFR2. These receptors are transmembrane glycoproteins with extracellular domains containing multiple cysteine-rich repeats that are structurally and functionally homologous, and the intracellular domains that are discrete and transduce their signals through both overlapping and distinct pathways. However, though TNF-α was initially discovered as an anti-tumor agent, it has been revealed that TNF-α and other ligands of this family are involved in some diseases like cancer, neurological, pulmonary, cardiovascular and autoimmune diseases and metabolic disorders. In general, TNF-α activates the control systems involved in cell proliferation, differentiation, inflammation and cell death, and the regulation of immune system. Although a normal level of TNF-α is very important for the regulation of immune responses, the persistence of the immune response as a result of inappropriate and excessive production of TNF-α can cause some inflammatory or autoimmune diseases. Accordingly, either neutralization TNF-α or blockade of its receptors using TNF-α inhibitors can be an effective therapeutic strategy to prevent or treat such inflammatory diseases. Several methods have been used to inhibit TNF-α, including the production of chimeric or fully human antibodies, soluble TNF-α receptors, or anti-TNF-α small molecules. The two previous agents are mostly capable of inhibiting the binding of TNF-α to its associated receptors, while anti-TNF-α small molecules, in addition to the above, inhibit the biosynthesis of TNF-α by blocking TNF-α mRNA biosynthesis, through the inhibition of its post-translational processing, or by blocking TNF-α receptors. Therefore, in this review article, we discuss the structure and characteristics of TNF-α and its related receptors: TNF-α signaling, TNF-α-mediated inflammatory diseases as well as TNF-α inhibition strategies.
Language:
Persian
Published:
Tehran University Medical Journal, Volume:75 Issue: 3, 2017
Pages:
159 to 171
magiran.com/p1718442  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!