RL- valued f-ring homomorphisms and lattice-valued maps
In this paper, for each lattice-valued map A ! L with some properties, a ring representation A ! RL is constructed. This representation is denoted by c which is an f-ring homomorphism and a Q-linear map, where its index c, mentions to a lattice-valued map. We use the notation a pq = (a − p) ^ (q − a), where p, q 2 Q and a 2 A, that is nominated as interval projection. To get a well-defined f-ring homomorphism c, we need such concepts as bounded, continuous, and Q-compatible for c, which are defined and some related results are investigated. On the contrary, we present a cozero lattice-valued map cϕ : A ! L for each f-ring homomorphism ϕ : A ! RL. It is proved that cc = cr and cϕ = ϕ, which they make a kind of correspondence relation between ring representations A ! RL and the lattice-valued maps A ! L, where the mapping cr : A ! L is called a realization of c. It is shown that cr = c and crr = cr. Finally, we describe how c can be a fundamental tool to extend pointfree version of Gelfand duality constructed by B. Banaschewski.
Categories and General Algebraic Structures with Applications, Volume:7 Issue:1, 2017
141 - 163
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!