Effect of nanoclay addition on the properties of agar/fish gelatin bilayer film containing TiO2 nanoparticles
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Natural polymers have gained increasing attention for the development of packaging to reduce ecologically-related problems caused by plastic packaging (environmental pollution). Among these natural polymers, proteins such as gelatin is considered a good candidate for food packaging. However, several studies have shown that gelatin films are brittle, and their hydrophilic nature connotes high water vapor permeability and water solubility. Different solutions have been suggested to overcome these weaknesses, including adding crosslinking agents and chemical modification, adding nanoparticles and developing bio-film blends and bilayers with polysaccharides. Agar is a polysaccharide extracted from marine red algae, which is biocompatible, has good mechanical properties and possesses good film-forming properties. Preventing food spoilage from light and oxygen-induced oxidation is one of the greatest concerns in the food industry. Despite having good mechanical and relatively good water vapor permeability properties, protein- or polysaccharide-based films dont have sufficient barrier properties against oxygen and UV light that cant properly prevent the oxidation of food products. Among nanoparticles, metal oxides like TiO2 (such as antiradiation and antimicrobial activities) and Montmorillonite (such as improved mechanical and barrier properties against moisture, WVP and gases) have evidenced good potential to improve functional properties of bio-films. Thus, the present study aimed to develop a new biodegradable bilayer agar/gelatin film incorporating nanoclay and TiO2 for food packaging, with maximum water sensitivity and maximum UV light and oxygen barrier properties.
Materials And Methods
Agar/gelatin bilayer films were prepared by a two-step casting technique. First, the agar layer was produced by solubilization of 1.5 g of agar powder (agar-agar analytical grade were obtained from Merck Co., Germany) in 100 mL of distilled water. Then, glycerol (obtained from Merck Co., Germany) was added as plasticizer. The agar film-forming solution was casted onto petri-dish. In the next step, the gelatin (obtained from cold water fish skin was purchased from Sigma-Aldrich, St. Louis, MO, USA) solutions were prepared by dissolving 4 g of the fish gelatin in 100 mL of distilled water. Glycerol was also added as plasticizer. The TiO2 dispersions (in ratios of 0 and 2% of the gelatin) and MMT (Na–montmorillonite (in ratios of 0, 3, 5 and 10% of the gelatin)) were added to the gelatin solution and stirred and sonnicated. Finally, produced solutions were then casted. The agar/gelatin films, with or without TiO2 and MMT, were characterized using SEM analysis. Film transparency, water vapor permeability, water solubility, swelling, surface color and mechanical properties of the bilayer films were also examined.
Results And Discussion
In this study, bilayer films based on agar and gelatin incorporated with TiO2-MMT nanoparticles have been successfully developed. Results demonstrated that some properties of the bilayer films were greatly influenced by TiO2 and MMT nanoparticle content. So that, the addition of TiO2 decreased water vapor permeability of the bilayers more than 15%, upon increasing TiO2 content to 2%. However, swelling ratio and moisture content increased with the increase in the nano-TiO2 content, probably due to the hydrophilic nature of the TiO2 nanoparticles. Also, whiteness index (WI) increased by adding 2% of TiO2 nanoparticles. As shown in the surface photograph of the bilayer films, TiO2 generated more opaque and whiter films, which might be related to the white color of TiO2 nanoparticles in solution form. Also, the addition of MMT (0, 3, 5, and 10%) to bilayer-2% TiO2 significantly decreased water vapor permeability and transmission of UV light of the bilayer films. However, tensile strength (TS) decreased with further increase of the nanoparticle concentration. Increasing the concentration of nanoparticle's MMT to 5%, the tensile TS of the agar/gelatin films increased from 12.86 to 20.54 MPa; it might also be related to the interactions between sulphydryl and carboxylic groups from certain amino acids in the gelatin structure with MMT and TiO2 nanoparticles. However, the TS decreased again with further increase of the filler content up to 10% MMT. Also, the addition of MMT from 3%-10% concentration significantly reduced the elongation at break value (EB) of the bilayer films from 41.77 to 28.90% for the bilayer films (p
Language:
Persian
Published:
Iranian Food Science and Technology Research Journal, Volume:14 Issue: 1, 2018
Pages:
27 to 38
magiran.com/p1784017  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!