Biorefinery of Bagasse and It s Pith by Fast Pyrolysis

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background And Objectives
Biomass is the only source of renewable carbon which can be converted to biofuels and added value products. Thermochemical processes such as fast pyrolysis can play an important role for production of biofuels, bio-chemicals and syngases from biorefinery technologies. With regards to this point that sugarcane wildly cultivate in south of Iran and its pith is an abundant resource of biomass from de-pithing process in pulp and paper and medium density fiberboard industries. The aim of this study is the comparison possibility use of bagasse and its pith for bio-oil production in pilot scale fluidized bed reactor and application development of biorefinery for bio-oil production and added-value products.
Material and
Methods
This research conducted on biofuel production in a pilot-scale reactor operating in a fluidized bed from bagasse and its pith. The components of bagasse are measured by proximate and ultimate analysis. The type and amount of heavy metals were used by applying an elemental analyzer. The thermal degradation characteristics were measured via TGA. Fast pyrolysis were performed at temperature of 470 °C, under screw feeder carrier the biomass in 90 g/h, inside pyrolyzer with nitrogen gas flow rate of 2 L/min.
Results
The elemental analysis indicated that the pith of bagasse contains substantial amounts of extractives and inorganic matter (predominantly Ca, K and Mg). The results of TGA indicated that most of weight losses of bagasse and its pith are among 250 and 350 ˚C which associated with main degradation components (cellulose, hemicellulose and lignin). Under the mentioned conditions, the yields of 53.2%, 35.5% (w/w); 25, 37% (w/w); 21%, 27.5% (w/w) for bio-oil, bio-char, and syngases were obtained from bagasse and pith respectively. The fixed carbon on bagasse was higher than its pith which led to higher energy value, while pith of bagasse contributes the higher bio-char. The heating value of bio-oil from bagasse is 20.6 Mj/kg which higher than pith and most of lignocellulosic materials reported in literatures. The lower oxygen content of bagasse will reduce the cost of upgrading for converting to bio-diesel and other chemicals. The pyrolysis gases components are CO2, CO, CH4, H2 and other hydrocarbons like ethane, propane and ethylene. The carbon dioxide is the dominant gas among them. Bagasse produced more carbon dioxide than pith in fast pyrolysis process.
Conclusions
The pith showed higher thermal stability which result in more bio-char production, because of the higher lignin content of pith in the fast pyrolysis process. The fast pyrolysis bio-oil of bagasse not only showed the possibility renewable energy and chemicals, but also its syngases enable utilize as proper energy resource in industries
Language:
Persian
Published:
Wood & Forest Science and Technology, Volume:24 Issue: 4, 2018
Pages:
27 to 40
magiran.com/p1801665  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!