Comparing the performance of cement and smectite in heavy metals removal from lead contaminated soils

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background And Objective
The continuous accumulation of toxic materials such as heavy metals in soil due to interaction with industrial and domestic wastes has contributed to an extensive health hazards. Therefore, the aims of this study are to evaluate the ability of cement (as a chemical adsorbent) in remediation of contaminated soil and to compre the obtained results by the physical adsorption method through the addition of active smectite clay mineral.
Method
To achieve the mentioned objectives, kaolinite soil in the laboratory conditions was contaminated with solutions containing 0 to 1 M concentration of Pb (NO3)2 in 1:10 ratio. Adding different percentages of cement and smectite to each sample, and after equilibrating, changes in pH and concentrations were determined. Tests of hydraulic conductivity (permeability), unconfined compression strength (UCS), toxicity characteristic leaching procedure (TCLP) and SEM were also performed to evaluate the impact of adsorbent type on reduction of the of pollution transportation potential.
Findings: The results indicate that at low concentrations of contaminants (up to 50 cmol/kg.soil), the type of absorbent does not have much influence on the heavy metals removal from contaminated soils. It was found that with the increase of the pollutant concentration and due to the buffering capacity reduction and the restructed clay mineral, the possibility of soil remediation through the physical absorption method is greatly decreased. Unlike the smectite limitation encountering with contaminated soil containing the heavy metals, the cement has a high adsorption capacity to adsorbe heavy metals. In the same content of adsorbent and with the increase of the Pb concentration, the amount of its reduction in the presence of cement is 15 times more than what observed in the presence of smectite. In addition, it can be seen that the particles solidification in the samples containing cement improves the engineering properties of materials, causes to trap the pollutants within the soil mass and consequently reduces the leaching and emission capability of pollutants as compared to the physical attraction method.
Conclusion
According to the results, using the physical adsorption to remove the heavy metals from contaminated soils (particularly at high concentrations of contaminant) is not recommended. Unlike the smectite limitation encountering with contaminated soil, application of cement is very effective to remove contaminants from the soil due to the combination of two mechanisms of stabilization and solidification. In appropriate remediation condition and with respect to EPA criteria, application of 0.1% of cement per 1 cmol/kg.soil contamination leads to safe remediation of the heavy metals from in contaminated soils.
Language:
Persian
Published:
Journal of Environmental Sciences and Technology, Volume:19 Issue: 2, 2017
Pages:
143 to 156
magiran.com/p1804352  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!