Estimation of Re-hospitalization Risk of Diabetic Patients based on Radial Base Function (RBF) Neural Network Method Combined with Colonial Competition Optimization Algorithm
Abstract:
Diabetes is the costliest gland disease in the world. Given the high rates of diabetic people, the necessity of reducing the costs of early re-hospitalization and increasing re-admissions within 30 days after discharge have drawn the attention of researchers and other health sector authorities to find ways to reduce potential and preventable hospital re-admissions. The objective of this paper is to estimate the risk of re-hospitalization of diabetic patients. In order to achieve this goal, the data were first pre-processed, and then, radial base function neural network combined with colonial competition optimization algorithm was used to estimate the risk of re-hospitalization of diabetic patients. Moreover, this risk was estimated using back propagation neural network algorithm and the radial base function neural network algorithm. The accuracy of the proposed method is 99.91. This method shows higher performance compared to radial base function neural network method and back propagation neural network without feature selection.
Language:
English
Published:
Majlesi Journal of Electrical Engineering, Volume:12 Issue: 1, 2018
Page:
109
magiran.com/p1812763  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.