Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that random effects have Gaussian distribution, but the assumption is questionable. This assumption is replaced in the present work, using a skew Gaussian distribution for the latent variables, which is more flexible and includes Gaussian distribution. We examine the proposed method using a real discrete data set.
Keywords:
Language:
Persian
Published:
Journal of Statistical Research of Iran, Volume:14 Issue: 2, Summer and Autumn 2017
Pages:
157 to 169
https://www.magiran.com/p1834788
سامانه نویسندگان
مقالات دیگری از این نویسنده (گان)
-
Penalized Composite Likelihood Estimation for Spatial Generalized Linear Mixed Models
*, Leyla Salehi
Journal of Sciences, Islamic Republic of Iran, Spring 2024 -
بیانیه اتحادیه انجمن های ایرانی علوم ریاضی به مناسبت روز آمار و برنامه ریزی
نشریه خبرنامه انجمن آمار ایران، پاییز 1403