Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that random effects have Gaussian distribution, but the assumption is questionable. This assumption is replaced in the present work, using a skew Gaussian distribution for the latent variables, which is more flexible and includes Gaussian distribution. We examine the proposed method using a real discrete data set.
Language:
Persian
Published:
Journal of Statistical Research of Iran, Volume:14 Issue: 2, Summer and Autumn 2017
Pages:
157 to 169
https://www.magiran.com/p1834788  
سامانه نویسندگان
  • Author (3)
    Mohsen Mohammadzadeh
    Professor Department of Statistics, Tarbiat Modares University, Tehran, Iran
    Mohammadzadeh، Mohsen
اطلاعات نویسنده(گان) توسط ایشان ثبت و تکمیل شده‌است. برای مشاهده مشخصات و فهرست همه مطالب، صفحه رزومه را ببینید.
مقالات دیگری از این نویسنده (گان)