Predicting land subsidence rate by estimating aquifer hydraulic parameters, obtained from aquifer-test data and optimization algorithms in the district 19 of Tehran

Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Groundwater modeling, land subsidence hazards and proper management of groundwater resources of the alluvial aquifer in the district 19 of Tehran, south of Tehran Plain need precise estimation of aquifer hydraulic parameters. Besides, traditional techniques and usual graphical methods have been approximate, expensive and time-consuming. In this paper, ten sets of aquifer test data were selected; moreover, these data were recorded in a well located in district 19 of Tehran, southwest of Tehran Plain during five years (2008 to 2012). For solving the previous methods’ problems, three computer codes have been developed to optimize aquifer parameters using three optimization approaches on the other hand, two kinds of genetic algorithms and a multi-elitist particle swarm optimization (MEPSO) which avoid getting stuck in local optima and save time. The efficacy and efficiency of the developed codes have been examined using ten sets of aquifer test data of a confined aquifer, and then their results have been compared with the results obtained by the graphical approach using AquiferTest software. Based on the fitness function, i.e. sum of square errors, the MEPSO and the GAs in descending order are more reliable for estimating the parameters contrast with the graphical method. Furthermore, the sensitivity analysis of the parameters during the performance of the optimization approaches has authenticated that the results obtained are enough precise and reliable. Then an equation has been presented according to the amounts of hydraulic conductivity which have been obtained using MEPSO during the years and the amounts of land subsidence rates which have been obtained using geodetic measurement methods to predict the amounts of land subsidence rates through the time when the amount of hydraulic conductivity will reach to Ultimately, based on the equation, after 30 years the amount of hydraulic conductivity will reach to and the total amount of land subsidence will be 0.5213 m from 2008 to 2038 . Moreover, land subsidence rates’ data obtained from interferometry synthetic aperture radar (InSAR) have confirmed the accuracy of the equations.
Language:
Persian
Published:
Geosciences Scientific Quarterly Journal, Volume:27 Issue: 107, 2018
Pages:
17 to 26
magiran.com/p1839454  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!