Dividend Policy Prediction by Multivariable and Univariate Neural Network Models
Abstract:
The topic dividend policy is one of the most leading issues in modern corporate finance affecting the firm value. The results of linear methods and regression could not satisfy researchers in forecasting of financial issues such as dividend policy.
In this paper, we present a comparative analysis of the forecasting accuracy of univariate and multivariate Artificial Neural Network using a sample of 183 companies listed in the Tehran Stock Exchange through for the years 2011_2015.
This study shows that the application of the multivariate neural network model results in forecasts that are more accurate than Univariate neural network forecasting models. Our findings show that forecast of a multivariate ANN incorporating Marsh and Merton (1987) variables is more accurate than univariate ANNs. Therefore, based on the results of the study we suggest that shareholders, investors and other stakeholders use multivariate ANNs to predict dividend policy of companies listed in Tehran Stock Exchange.
Article Type:
Research/Original Article
Language:
Persian
Published:
Journal of Investment Knowledge, Volume:7 Issue: 26, 2018
Pages:
169 - 184
magiran.com/p1845317  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.