Proposing a New Method for Acquiring Skills in Reinforcement Learning with the Help of Graph Clustering
Reinforcement learning is atype of machine learning methods in which the agent uses its transactions with the environment to recognize the environment and to improve its behavior.One of the main problems of standard reinforcement learning algorithms like Q-learning is that they are not able to solve large scale problems in a reasonable time. Acquiring skills helps to decompose the problem to a set of sub-problems and to solve it with hierarchical methods. In spite of the promising results of using skills in hierarchical reinforcement learning, it has been shown in some previous studies that based on the imposed task, the effect of skills on learning performance can be quite positive. On the contrary, if they are not properly selected, they can increase the complexity of problem-solving. Hence, one of the weaknesses of previous methods proposed for automatically acquiring skills is the lack of a systematic evaluation method for each acquired skill. In this paper, we propose new methods based on graph clustering for subgoal extraction and acquisition of skills. Also, we present new criteria for evaluating skills, with the help of which, inappropriate skills for solving the problem are eliminated. Using these methods in a number of experimental environments shows a significant increase in learning speed.
Article Type:
Research/Original Article
Iranian Journal of Electrical and Computer Engineering, Volume:16 Issue: 2, 2018
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.