New hypothesis on time and thermal gradient of subducted slab with emphasis on dolomitic and shale host rocks in formation of Pb-Zn deposits of Irankuh- Ahangaran belt

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Mississippi Valley-Type (MVT) deposits are epigenetic zinc and lead deposits with minor copper hosted by dolostone, limestone, and locally sandstone in platform carbonate sequences inboard of major orogenic belts (Leach and Sangster, 1993; Leach et al., 2010). The Irankuh-Ahangaran Belt, which is the most important Pb-Zn mineralized zone of Iran, is situated within the Sanandaj-Sirjan tectonic zone. This belt is 400 km in length and 100 km in width. Three deposits including Irankuh mininig district, Ahangaran and Hosseinabad deposits were studied in this article (Fig. 1). The aim of this research is study of thermal gradient of subducted slab and age of formation of Pb-Zn deposits at Irankuh-Ahangaran belt, which is contrary information has been published so far on the type and their formation. Also, chemistry of ore-fluid in MVT deposits and impact of dolomitic and shale host rock on paragenesis, alteration, style, reserves and grade of deposits were discussed.These parameters will certainly be useful for exploration of the hidden MVT type deposits in the Irankou-Ahangan belt. Result and Discussion: The Irankuh mineralization is hosted by Cretaceous dolostone and minor Jurassic shale rocks as epigenetic. The constructive thrust fault, which has been cut the Jurassic and Cretaceous host rocks, has played a major role in the rising of fluid and formation of mineralization. Mineralization is occurred as replacement and open space filling (fault breccia, veinlets and cavity of rock) in dolostone and breccia, veinlet and open space filling in shale host rock. The mineral assembelages are Fe-rich sphalerite, Feand Mn-rich dolomite, ankrite, galena, minor pyrite, bituminous, calcite ± quartz ± barite within carbonate host rocks, whereas quartz, pyrite, Ferich sphalerite, galena, minor chalcopyrite, low Fe-dolomite, bituminous, ± barite ± calcite are important primary minerals at clastic hos rocks (Karimpour et al., 2018). The Ahangaran deposit is very similar to Irankuh in host rock, alteration, paragenesis, and form of mineralization. Thrust fault has a constructive role for occurrence of mineralization and later destructive strike slip and normal faults have caused the displacement and destruction of mineralization. The Hosseinabad deposit is hosted by Jurassic shale, siltstone, and sandstone rocks as veinveinlets, breccia and open space filling with structural control. Alteratin consists of silicification, chlorite, bituminous, and minor siderite, dolomite and ankerite similar to mineralization hosted by shale in Irankuh district. The mineral assemblages are galena, Fe-rich sphalerite, pyrite, chalcopyrite and minor phyrotite. Due to the lack of a proper dolostone unit in the Husseinabad deposit, mineralization is concentrated in particular areas with low-grade and low-reserves. Based on lithology, alteration, mineralization style, structural control by thrust faults, mineral paragenesis, and comparison with differnet types of Pb-Zn deposits, all deposits of Irankuh- Ahangaran belt are MVT-type. Deep-seated thrust faults formed during the early stages of subduction (~ 70 to 75 Ma), and played an important role in the upward migration of hydrothermal fluids from the basement to shallow depths. The geochronology of pyrite in Irankuh district based on Re-Os method indicate age of Irankuh Pb-Zn mineralization is 66.5 ± 1.6 Ma (Liu et al., 2019). Since the thrust faults have been cut the Jurassic to Upper Cretaceous rocks, and according to the absoulte age determined in Irankuh, the mineralization of this belt have been formed in the age range of 66 to 56 million years ago, mainly in the Paleocene (Fig. 15). Karimpour and Sadeghi (2018) suggested the hydrothermal fluid originated from the dehydration of a hot and young oceanic subducted slab, which liberated Pb, Zn, and other metals, and may have removed metals from rocks and organic material of the continental crust. More than 90% of all the water within the oceanic slab was released in the depth zone of the forearc region (depth of 30 to 50 km) (Karimpour and Sadeghi, 2018). In the depth zone, Mg-rich silicate minerals (such as antigorite, hornblende, chlorite, talc) have broken and the produced fluid is rich in Mg and Fe (Fig. 17). The ore-fluid of MVT deposits is Si-poor and Feand Mg- rich. Such fluid is mineralized on the hosts of the dolstone (Irankuh and Ahangaran) or Shale-Siltstone (Hossein Abad, and part of Irankuh and Ahangaran). There are significant differences in the type of paragenesis, alteration, shape, dimensions, reserves and grade in the deposits of this belt, which is controlled by the host rock type. Based on all lithological evidence, alteration, shape of mineralization, existence of thrust faults, mineral paragenesis and specific geological and geographic location, it can be used to exploration of the hidden MVT deposits in this belt.
Language:
Persian
Published:
Journal of Economic Geology, Volume:10 Issue: 2, 2019
Pages:
677 to 707
magiran.com/p1927956  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!